资源描述
-备战中考数学综合题专题复习【平行四边形】专题解析附答案
一、平行四边形
1.如图1,正方形ABCD一边AB在直尺一边所在直线MN上,点O是对角线AC、BD交点,过点O作OE⊥MN于点E.
(1)如图1,线段AB与OE之间数量关系为 .(请直接填结论)
(2)保证点A一直在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F.
①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样数量关系?请阐明理由.
②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论与否仍然成立呢?若成立,请直接写出结论;若不成立,请写出变化后结论并证明.
③当正方形ABCD绕点A旋转到如图4位置时,线段AF、BF与OE之间数量关系为 .(请直接填结论)
【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF﹣AF=2OE,
【解析】
试题分析:(1)运用直角三角形斜边中线等于斜边二分之一即可得出结论;
(2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形对边相等可得EF=BH,BF=HE,根据正方形对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角余角相等求出∠AOE=∠OBH,然后运用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;
②过点B作BH⊥OE交OE延长线于H,可得四边形BHEF是矩形,根据矩形对边相等可得EF=BH,BF=HE,根据正方形对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角余角相等求出∠AOE=∠OBH,然后运用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;
③同②措施可证.
试题解析:(1)∵AC,BD是正方形对角线,
∴OA=OC=OB,∠BAD=∠ABC=90°,
∵OE⊥AB,
∴OE=AB,
∴AB=2OE,
(2)①AF+BF=2OE
证明:如图2,过点B作BH⊥OE于点H
∴∠BHE=∠BHO=90°
∵OE⊥MN,BF⊥MN
∴∠BFE=∠OEF=90°
∴四边形EFBH为矩形
∴BF=EH,EF=BH
∵四边形ABCD为正方形
∴OA=OB,∠AOB=90°
∴∠AOE+∠HOB=∠OBH+∠HOB=90°
∴∠AOE=∠OBH
∴△AEO≌△OHB(AAS)
∴AE=OH,OE=BH
∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.
②AF﹣BF=2OE
证明:如图3,延长OE,过点B作BH⊥OE于点H
∴∠EHB=90°
∵OE⊥MN,BF⊥MN
∴∠AEO=∠HEF=∠BFE=90°
∴四边形HBFE为矩形
∴BF=HE,EF=BH
∵四边形ABCD是正方形
∴OA=OB,∠AOB=90°
∴∠AOE+∠BOH=∠OBH+∠BOH
∴∠AOE=∠OBH
∴△AOE≌△OBH(AAS)
∴AE=OH,OE=BH,
∴AF﹣BF
=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE
③BF﹣AF=2OE,
如图4,作OG⊥BF于G,则四边形EFGO是矩形,
∴EF=GO,GF=EO,∠GOE=90°,
∴∠AOE+∠AOG=90°.
在正方形ABCD中,OA=OB,∠AOB=90°,
∴∠AOG+∠BOG=90°,
∴∠AOE=∠BOG.
∵OG⊥BF,OE⊥AE,
∴∠AEO=∠BGO=90°.
∴△AOE≌△BOG(AAS),
∴OE=OG,AE=BG,
∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,
∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,
∴BF﹣AF=2OE.
2.已知Rt△ABD中,边AB=OB=1,∠ABO=90°
问题探究:
(1)以AB为边,在Rt△ABO右边作正方形ABC,如图(1),则点O与点D距离为 .
(2)以AB为边,在Rt△ABO右边作等边三角形ABC,如图(2),求点O与点C距离.
问题处理:
(3)若线段DE=1,线段DE两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F距离有无最大值,假如有,求出最大值,假如没有,阐明理由.
【答案】(1)、;(2)、;(3)、.
【解析】
【分析】
试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)、如图3中,当OF⊥DE时,OF值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可处理问题.
【详解】
试题解析:(1)、如图1中,连接OD,
∵四边形ABCD是正方形, ∴AB=BC=CD=AD=1,∠C=90° 在Rt△ODC中,∵∠C=90°,OC=2,CD=1,
∴OD=
(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.
∵∠FBE=∠E=∠CFB=90°, ∴四边形BECF是矩形, ∴BF=CF=,CF=BE=,
在Rt△OCE中,OC==.
(3)、如图3中,当OF⊥DE时,OF值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.
∵FD=FE=DE=1,OF⊥DE, ∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°, ∵OM=DM,
∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=, ∴DM=OM=,
∵FH=, ∴OF=OM+MH+FH==.
∴OF最大值为.
考点:四边形综合题.
3.如图,△ABC中,AD是边BC上中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
【答案】(1)见解析;
(2)见解析.
【解析】
【分析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;
(2)由∠BAC=90°,AD是边BC上中线,得AD=BD=CD,即可证明.
【详解】
(1)证明:∵AE∥BC,DE∥AB ,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
【点睛】
本题考察了平行四边形判定、菱形判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形判定措施是证明关键.
4.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)请问EG与CG存在怎样数量关系,并证明你结论;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中结论与否仍然成立?若成立,请给出证明;若不成立,请阐明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接对应线段,问(1)中结论与否仍然成立?(请直接写出成果,不必写出理由)
【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立
【解析】
【分析】
(1)运用直角三角形斜边上中线等于斜边二分之一,可证出CG=EG.
(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最终证出CG=EG.
(3)结论仍然成立.
【详解】
(1)CG=EG.理由如下:
∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF中点,∴CG=FD,同理.在Rt△DEF中,EG=FD,∴CG=EG.
(2)(1)中结论仍然成立,即EG=CG.
证法一:连接AG,过G点作MN⊥AD于M,与EF延长线交于N点.
在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;
在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG.
∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.
证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.
在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE
∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.
∵MG=CG,∴EG=MC,∴EG=CG.
(3)(1)中结论仍然成立.理由如下:
过F作CD平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.
由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又由于BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.
∵G为CM中点,∴EG=CG,EG⊥CG
【点睛】
本题是四边形综合题.(1)关键是运用直角三角形斜边上中线等于斜边二分之一解答;(2)关键是运用了直角三角形斜边上中线等于斜边二分之一性质、全等三角形判定和性质解答.
5.已知AD是△ABC中线P是线段AD上一点(不与点A、D重叠),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC中点,AD与EF交于点M;
(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;
(2)如图2,当点P与点M重叠时,在不添加任何辅助线条件下,写出所有与△BPE面积相等三角形(不包括△BPE自身).
【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.
【解析】
【分析】
(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;
(2)由△APE与△BPE底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上高等于△AEF底边EF上高二分之一,推出S△PGH=S△AEF=S△APF,即可得出成果.
【详解】
(1)证明:∵E、F、G、H分别是AB、AC、PB、PC中点,
∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,
∴EF∥GH,EF=GH,
∴四边形EGHF是平行四边形,
∵AB=AC,
∴AD⊥BC,
∴EF⊥AP,
∵EG∥AP,
∴EF⊥EG,
∴平行四边形EGHF是矩形;
(2)∵PE是△APB中线,
∴△APE与△BPE底AE=BE,又等高,
∴S△APE=S△BPE,
∵AP是△AEF中线,
∴△APE与△APF底EP=FP,又等高,
∴S△APE=S△APF,
∴S△APF=S△BPE,
∵PF是△APC中线,
∴△APF与△CPF底AF=CF,又等高,
∴S△APF=S△CPF,
∴S△CPF=S△BPE,
∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC中点,
∴△AEF底边EF上高等于△ABC底边BC上高二分之一,△PGH底边GH上高等于△PBC底边BC上高二分之一,
∴△PGH底边GH上高等于△AEF底边EF上高二分之一,
∵GH=EF,
∴S△PGH=S△AEF=S△APF,
综上所述,与△BPE面积相等三角形为:△APE、△APF、△CPF、△PGH.
【点睛】
本题考察了矩形判定与性质、平行四边形判定、三角形中位线定理、平行线性质、三角形面积计算等知识,纯熟掌握三角形中位线定理是处理问题关键.
6.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD延长线于G.
(1)求证:AE=EG;
(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;
(3)如图3,取GF中点M,若AB=5,求EM长.
【答案】(1)证明见解析(2)证明见解析(3)
【解析】
【分析】
(1)根据平行线性质和等腰三角形三线合一性质得:∠CAD=∠G,可得AE=EG;
(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;
(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=AC,计算可得结论.
【详解】
证明:(1)如图1,过E作EH⊥CF于H,
∵AD⊥BC,
∴EH∥AD,
∴∠CEH=∠CAD,∠HEF=∠G,
∵CE=EF,
∴∠CEH=∠HEF,
∴∠CAD=∠G,
∴AE=EG;
(2)如图2,连接GC,
∵AC=BC,AD⊥BC,
∴BD=CD,
∴AG是BC垂直平分线,
∴GC=GB,
∴∠GBF=∠BCG,
∵BG=BF,
∴GC=BE,
∵CE=EF,
∴∠CEF=180°﹣2∠F,
∵BG=BF,
∴∠GBF=180°﹣2∠F,
∴∠GBF=∠CEF,
∴∠CEF=∠BCG,
∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,
∴∠GCE=∠F,
在△BEF和△GCE中,
,
∴△BEF≌△GEC(SAS),
∴BE=EG;
(3)如图3,连接DM,取AC中点N,连接DN,
由(1)得AE=EG,
∴∠GAE=∠AGE,
在Rt△ACD中,N为AC中点,
∴DN=AC=AN,∠DAN=∠ADN,
∴∠ADN=∠AGE,
∴DN∥GF,
在Rt△GDF中,M是FG中点,
∴DM=FG=GM,∠GDM=∠AGE,
∴∠GDM=∠DAN,
∴DM∥AE,
∴四边形DMEN是平行四边形,
∴EM=DN=AC,
∵AC=AB=5,
∴EM=.
【点睛】
本题是三角形综合题,重要考察了全等三角形判定与性质,直角三角形斜边中线性质,等腰三角形性质和判定,平行四边形性质和判定等知识,解题关键是作辅助线,并纯熟掌握全等三角形判定措施,尤其是第三问,辅助线作法是关键.
7.如图①,在矩形中,点从边中点出发,沿着速运动,速度为每秒2个单位长度,抵达点后停止运动,点是上点,,设面积为,点运动时间为秒,与函数关系如图②所示.
(1)图①中= ,= ,图②中= .
(2)当=1秒时,试判断以为直径圆与否与边相切?请阐明理由:
(3)点在运动过程中,将矩形沿所在直线折叠,则为何值时,折叠后顶点对应点落在矩形一边上.
【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=、5、.
【解析】
【分析】
(1)由题意得出AB=2BE,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P在E处,m=△AEQ面积=AQ×AE=20即可;
(2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,设以PQ为直径圆圆心为O',作O'N⊥BC于N,延长NO'交AD于M,则MN=AB=8,O'M∥AB,MN=AB=8,由三角形中位线定理得出O'M=AP=3,求出O'N=MN-O'M=5<圆O'半径,即可得出结论;
(3)分三种状况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,则QF=AB=8,BF=AQ=10,由折叠性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出A'F==6,得出A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得出方程,解方程即可;
②当点P在BC边上,A'落在BC边上时,由折叠性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;
③当点P在BC边上,A'落在CD边上时,由折叠性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.
【详解】
(1)∵点P从AB边中点E出发,速度为每秒2个单位长度,
∴AB=2BE,
由图象得:t=2时,BE=2×2=4,
∴AB=2BE=8,AE=BE=4,
t=11时,2t=22,
∴BC=22-4=18,
当t=0时,点P在E处,m=△AEQ面积=AQ×AE=×10×4=20;
故答案为8,18,20;
(2)当t=1秒时,以PQ为直径圆不与BC边相切,理由如下:
当t=1时,PE=2,
∴AP=AE+PE=4+2=6,
∵四边形ABCD是矩形,
∴∠A=90°,
∴PQ=,
设以PQ为直径圆圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:
则MN=AB=8,O'M∥AB,MN=AB=8,
∵O'为PQ中点,
∴O''M是△APQ中位线,
∴O'M=AP=3,
∴O'N=MN-O'M=5<,
∴以PQ为直径圆不与BC边相切;
(3)分三种状况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:
则QF=AB=8,BF=AQ=10,
∵四边形ABCD是矩形,
∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,
由折叠性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,
∴A'F==6,
∴A'B=BF-A'F=4,
在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,
由勾股定理得:42+(4-2t)2=(4+2t)2,
解得:t=;
②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:
由折叠性质得:A'P=AP,
∴∠APQ'=∠A'PQ,
∵AD∥BC,
∴∠AQP=∠A'PQ,
∴∠APQ=∠AQP,
∴AP=AQ=A'P=10,
在Rt△ABP中,由勾股定理得:BP==6,
又∵BP=2t-4,
∴2t-4=6,解得:t=5;
③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:
由折叠性质得:A'P=AP,A'Q=AQ=10,
在Rt△DQA'中,DQ=AD-AQ=8,
由勾股定理得:DA'==6,
∴A'C=CD-DA'=2,
在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t,
由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2,
∴82+(2t-4)2=22+(22-2t)2,
解得:t=;
综上所述,t为或5或时,折叠后顶点A对应点A′落在矩形一边上.
【点睛】
四边形综合题目,考察了矩形性质、折叠变换性质、勾股定理、函数图象、直线与圆位置关系、三角形中位线定理、等腰三角形判定、以及分类讨论等知识.
8.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重叠),GE⊥DC于点E,GF⊥BC于点F,连结AG.
(1)写出线段AG,GE,GF长度之间数量关系,并阐明理由;
(2)若正方形ABCD边长为1,∠AGF=105°,求线段BG长.
【答案】(1)AG2=GE2+GF2(2)
【解析】
试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,运用勾股定理即可证明;
(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可处理问题.
试题解析:(1)结论:AG2=GE2+GF2.
理由:连接CG.
∵四边形ABCD是正方形,
∴A、C有关对角线BD对称,
∵点G在BD上,
∴GA=GC,
∵GE⊥DC于点E,GF⊥BC于点F,
∴∠GEC=∠ECF=∠CFG=90°,
∴四边形EGFC是矩形,
∴CF=GE,
在Rt△GFC中,∵CG2=GF2+CF2,
∴AG2=GF2+GE2.
(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.
∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,
∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,
∴∠AMN=30°,
∴AM=BM=2x,MN=x,
在Rt△ABN中,∵AB2=AN2+BN2,
∴1=x2+(2x+x)2,
解得x=,
∴BN=,
∴BG=BN÷cos30°=.
考点:1、正方形性质,2、矩形判定和性质,3、勾股定理,4、直角三角形30度性质
9.(1)问题发现
如图1,点E. F分别在正方形ABCD边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试阐明理由;
(2)类比引申
如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系 时,仍有EF=BE+DF;
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC满足等量关系,并写出推理过程。
【答案】(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
试题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重叠,证出△AFG≌△AFE,根据全等三角形性质得出EF=FG,即可得出答案;
(2)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重叠,证出△AFE≌△AFG,根据全等三角形性质得出EF=FG,即可得出答案;
(3)把△ACE旋转到ABF位置,连接DF,证明△AFE≌△AFG(SAS),则EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根据勾股定理即可作出判断.
试题解析:(1)理由是:如图1,
∵AB=AD,
∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重叠,如图1,
∵∠ADC=∠B=90∘,
∴∠FDG=180∘,点F. D. G共线,
则∠DAG=∠BAE,AE=AG,
∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90∘−45∘=45∘=∠EAF,
即∠EAF=∠FAG,
在△EAF和△GAF中,
AF=AF,∠EAF=∠GAF,AE=AG,
∴△AFG≌△AFE(SAS),
∴EF=FG=BE+DF;
(2)∠B+∠D=180∘时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重叠,如图2,
∴∠BAE=∠DAG,
∵∠BAD=90∘,∠EAF=45∘,
∴∠BAE+∠DAF=45∘,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180∘,
∴∠FDG=180∘,点F. D. G共线,
在△AFE和△AFG中,
AE=AG,∠FAE=∠FAG,AF=AF,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF,
故答案为:∠B+∠ADC=180∘;
(3)BD2+CE2=DE2.
理由是:把△ACE旋转到ABF位置,连接DF,
则∠FAB=∠CAE.
∵∠BAC=90∘,∠DAE=45∘,
∴∠BAD+∠CAE=45∘,
又∵∠FAB=∠CAE,
∴∠FAD=∠DAE=45∘,
则在△ADF和△ADE中,
AD=AD,∠FAD=∠DAE,AF=AE,
∴△ADF≌△ADE,
∴DF=DE,∠C=∠ABF=45∘,
∴∠BDF=90∘,
∴△BDF是直角三角形,
∴BD2+BF2=DF2,
∴BD2+CE2=DE2.
10.在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重叠,折痕为EF,连接DF.
(1)阐明△BEF是等腰三角形;
(2)求折痕EF长.
【答案】(1)见解析;(2).
【解析】
【分析】
(1)根据折叠得出∠DEF=∠BEF,根据矩形性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.
【详解】
(1)∵现将纸片折叠,使点D与点B重叠,折痕为EF,∴∠DEF=∠BEF.
∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,因此EM=AB=6,AE=BM.
∵现将纸片折叠,使点D与点B重叠,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.
∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.
在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.
在Rt△EMF中,由勾股定理得:EF==.
故答案为:.
【点睛】
本题考察了折叠性质和矩形性质、勾股定理等知识点,能熟记折叠性质是解答此题关键.
11.如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H.
(1)①如图2,当点F与点B重叠时,CE= ,CG= ;
②如图3,当点E是BD中点时,CE= ,CG= ;
(2)在图1,连接BG,当矩形CEFG伴随点E运动而变化时,猜想△EBG形状?并加以证明;
(3)在图1,值与否会发生变化?若不变,求出它值;若变化,阐明理由;
(4)在图1,设DE长为x,矩形CEFG面积为S,试求S有关x函数关系式,并直接写出x取值范围.
【答案】(1), ,5, ;(2)△EBG是直角三角形,理由详见解析;(3) ;(4)S=x2﹣x+48(0≤x≤).
【解析】
【分析】
(1)①运用面积法求出CE,再运用勾股定理求出EF即可;②运用直角三角形斜边中线定理求出CE,再运用相似三角形性质求出EF即可;
(2)根据直角三角形判定措施:假如一种三角形一边上中线等于这条边二分之一,则这个三角形是直角三角形即可判断;
(3)只要证明△DCE∽△BCG,即可处理问题;
(4)运用相似多边形性质构建函数关系式即可;
【详解】
(1)①如图2中,
在Rt△BAD中,BD==10,
∵S△BCD=•CD•BC=•BD•CE,
∴CE=.CG=BE=.
②如图3中,过点E作MN⊥AM交AB于N,交CD于M.
∵DE=BE,
∴CE=BD=5,
∵△CME∽△ENF,
∴,
∴CG=EF=,
(2)结论:△EBG是直角三角形.
理由:如图1中,连接BH.
在Rt△BCF中,∵FH=CH,
∴BH=FH=CH,
∵四边形EFGC是矩形,
∴EH=HG=HF=HC,
∴BH=EH=HG,
∴△EBG是直角三角形.
(3)F如图1中,∵HE=HC=HG=HB=HF,
∴C、E、F、B、G五点共圆,
∵EF=CG,
∴∠CBG=∠EBF,
∵CD∥AB,
∴∠EBF=∠CDE,
∴∠CBG=∠CDE,
∵∠DCB=∠ECG=90°,
∴∠DCE=∠BCG,
∴△DCE∽△BCG,
∴.
(4)由(3)可知:
,
∴矩形CEFG∽矩形ABCD,
∴,
∵CE2=(-x)2+)2,S矩形ABCD=48,
∴S矩形CEFG= [(-x)2+()2].
∴矩形CEFG面积S=x2-x+48(0≤x≤).
【点睛】
本题考察相似三角形综合题、矩形性质、相似三角形判定和性质、勾股定理、直角三角形判定和性质、相似多边形性质和判定等知识,解题关键是灵活运用所学知识处理问题,学会添加常用辅助线,构造相似三角形或直角三角形处理问题,属于中考压轴题.
12.已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.
(1)如图①,当四边形EFGH为正方形时,求△GFC面积;
(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC面积(用a表达);
(3)在(2)条件下,△GFC面积能否等于2?请阐明理由.
【答案】(1)10;(2)12-a;(3)不能
【解析】
解:(1)过点G作GM⊥BC于M.在正方形EFGH中,
∠HEF=90°,EH=EF,
∴∠AEH+∠BEF=90°.
∵∠AEH+∠AHE=90°,
∴∠AHE=∠BEF.
又∵∠A=∠B=90°,
∴△AHE≌△BEF.
同理可证△MFG≌△BEF.
∴GM=BF=AE=2.∴FC=BC-BF=10.
∴.
(2)过点G作GM⊥BC交BC延长线于M,连接HF.
∵AD∥BC,∴∠AHF=∠MFH.
∵EH∥FG,∴∠EHF=∠GFH.
∴∠AHE=∠MFG.
又∵∠A=∠GMF=90°,EH=GF,
∴△AHE≌△MFG.∴GM=AE=2.
∴.
(3)△GFC面积不能等于2.
阐明一:∵若S△GFC=2,则12-a=2,∴a=10.
此时,在△BEF中,
.
在△AHE中,
,
∴AH>AD,即点H已经不在边AD上,故不也许有S△GFC=2.
阐明二:△GFC面积不能等于2.∵点H在AD上,
∴菱形边EH最大值为,∴BF最大值为.
又∵函数S△GFC=12-a值伴随a增大而减小,
∴S△GFC最小值为.
又∵,∴△GFC面积不能等于2.
13.如图,点E是正方形ABCD边AB上一点,连结CE,过顶点C作CF⊥CE,交AD延长线于F.求证:BE=DF.
【答案】证明见解析.
【解析】
分析:根据正方形性质,证出BC=CD,∠B=∠CDF,∠BCD=90°,再由垂直性质得到∠BCE=∠DCF,然后根据“ASA”证明△BCE≌△BCE即可得到BE=DF
详解:证明:∵CF⊥CE,
∴∠ECF=90°,
又∵∠BCG=90°,
∴∠BCE+∠ECD =∠DCF+∠ECD
∴∠BCE=∠DCF,
在△BCE与△DCF中,
∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,
∴△BCE≌△BCE(ASA),
∴BE=DF.
点睛:本题考察是正方形性质,熟知正方形性质及全等三角形判定与性质是解答此题关键.
14.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.
(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;
(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中两个结论与否成立?若成立,直接写出结论即可;若不成立,请你直接写出你猜想成果;
(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间数量关系.
【答案】(1)见解析;
(2)EF⊥BC仍然成立;
(3)EF=BC
【解析】
试题分析:(1)由平行四边形性质得到BH=HC=BC,OH=HF,再由等边三角形性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;
(2)由平行四边形性质得到BH=HC=BC,OH=HF,再由等腰直角三角形性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;
(3)由平行四边形性质得到BH=HC=BC,OH=HF,再由等腰三角形性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.
试题解析:(1)连接AH,如图1,
∵四边形OBFC是平行四边形,
∴BH=HC=BC,OH=HF,
∵△ABC是等边三角形,
∴AB=BC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2,
∴AH==BC,
∵OA=AE,OH=HF,
∴AH是△OEF中位线,
∴AH=EF,AH∥EF,
∴EF⊥BC,BC=EF,
∴EF⊥BC,EF=BC;
(2)EF⊥BC仍然成立,EF=BC,如图2,
∵四边形OBFC是平行四边形,
∴BH=HC=BC,OH=HF,
∵△ABC是等腰三角形,
∴AB=BC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,
∴AH=BH=BC,
∵OA=AE,OH=HF,
∴AH是△OEF中位线,
∴AH=EF,AH∥EF,
∴EF⊥BC,BC=EF,
∴EF⊥BC,EF=BC;
(3)如图3,
∵四边形OBFC是平行四边形,
∴BH=HC=BC,OH=HF,
∵△ABC是等腰三角形,
∴AB=kBC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2-)BC2,
∴AH=BH=BC,
∵OA=AE,OH=HF,
∴AH是△OEF中位线,
∴AH=EF,AH∥EF,
∴EF⊥BC,BC=EF,
∴EF=BC.
考点:四边形综合题.
15.如图,既有一张边长为4正方形纸片ABCD,点P为正方形AD边上一点(不与点A、点D重叠),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在
展开阅读全文