收藏 分销(赏)

苏教版六年级数学小升初知识点整理.doc

上传人:精**** 文档编号:1298546 上传时间:2024-04-22 格式:DOC 页数:12 大小:110KB
下载 相关 举报
苏教版六年级数学小升初知识点整理.doc_第1页
第1页 / 共12页
苏教版六年级数学小升初知识点整理.doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述
知识整理 第一单元、数与代数 一、数的认识 1、数的意义 (1)自然数:0、1、2、3、4……都是自然数。可以表示物体的个数或次数。自然数的个数是无限的,最小的自然数是0,没有最大的自然数。 (2)0:一个物体也没有,用0表示。0是最小的自然数。0还有其他多种用法,在写数记数中,可以用0来占位;在测量活动中,用0表示起点;在相反意义量的记录中,用0作分界点。 (3)负数:比0小的数是负数,比0大的数是正数。0既不是正数,也不是负数。 (4)小数:分母是10、100、1000……的十进分数可以写成小数。 (5)分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。两个数相除的商可以用分数表示。 把单位“ 1”平均分成若干份,表示这样的一份的数叫做分数单位。 (6)百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫做百分比或百分率。百分数是一种特殊的分数。 二、数的联系 1、整数与小数:整数和小数在计数方法上是一致的,都是用十进制计数法记录的。整数可以根据小数的基本性质改写成小数。 2、小数与分数:小数就是分母是10、100、1000……的十进分数,小数是特殊的分数。 3、分数与百分数:百分数虽然在形式上与分数是类似的,但在意义上有明显的不同。百分数只能表示一个数是另一个数的百分之几,所以也叫做百分比(百分率),而分数不仅可以表示一个数是另一个数的几分之几,也可以用来表示一个具体的数量。 4、正数与负数:以0为分界点,比0大的数就是正数,比0小的数就是负数。正数可以有正整数、正分数;负数可以有负整数、负分数。0既不是正数,也不是负数。 三、数位顺序表 1、数位、位数和计数单位:整数与小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位,各个计数单位所占的位置,叫做数位。 一个自然数数位的个数,叫做位数;小数位数是以小数点右边的数位多少来定的 2、多位数的读法、写法:多位数从个位起,每四位分为一级,可分为个级、万级、亿级。读数时,从最高位起,一级一级的读。读万级或亿级的数时要按照个级的读法来读,并在后面加上级名。每一级末尾的0都不读,其他数位上不论连续有几个0,只读一个0。 写数时,先确定最高位是哪一级的哪个数位,然后从高位起,一级一级往下写,哪一位一个单位也没有,就在哪个数位上写0来占位。 3、小数的读法、写法:读小数时,整数部分按照整数读法来读(整数部分是0的读作“零”),小数点读作“点”,小数部分顺次读出每个数位上的数字。 写小数时,整数部分按照整数写法来写(整数部分是0的写作“0”),小数点写在个位的右下面,小数部分顺次写出每个数位上的数字。 六、数的大小比较 包括整数、小数、分数的大小比较,也包括他们相互之间的大小比较。 七、数的性质 1、整除 (1)整除与除尽 整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除a.。 除尽:数a除以数b(b≠0),除得的商是整数或是有限小数,这就叫做除尽. 整除是除尽的一种特殊情况,整除也可以说是除尽,但除尽不一定是整除. (2)因数和倍数 如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数. 倍数:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数. 因数:一个数的因数的个数是有限的,其中最小的约数是1,最大的约数是它本身. 因数和倍数是相互依存的 (3)能被2.3.5整除的数的特征 能被2整除的数的特征:个位上是0,2,4,6,8,: 能被3整除的数的特征:个位上是0或5 能被5整除的数的特征:各个位上的数字的和能被3整除 能同时被2、5整除的数的特征:个位是0 能同时被2、3、5整除的数的特征:个位是0,而且各个位上的数字的和能被3整除. (4)偶数和奇数 一个自然数,不是奇数就是偶数 偶数:能被2整除的数。最小的偶数是0 奇数:不能被2整除的数.最小的奇数是1. (5)质数和合数 质数(素数):只有1和它本身两个因数。最小的质数是2. 合数:除了1和它本身还有别的因数。最小的合数是4. 1:既不是质数也不是合数 一个自然数根据因数的个数,可以分为1、质数和合数。 (6)最大公约数和最小公倍数 公约数,最大公约数: 几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数. 公倍数,最小公倍数: 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数. 互质数: 公约数只有1的两个数叫做互质数. 互质数的几种特殊情况: ①两个数都是质数,这两个数一定互质. ②相邻的两个数互质. ③1和任何数都互质. 求最大公约数和最小公倍数 ①如果较小数是较大数的因数,那么较小数就是这两个数的最大公约数;较大数就是这两个数的最小公倍数. ②如果两个数互质,它们的最大公因数就是1;最小公倍数就是它们的积. ③一般情况:可以根据最大公因数和最小公倍数的意义去找,也可以利用短除法去找。 2、小数的基本性质:小数的末尾添上0或去掉0,小数的大小不变。根据小数的基本性质,可以化简小数、根据需要把整数或小数改写成指定的几位小数。 3、分数的基本性质:分数的分子和分母都乘或除以一个相同的数(0除外),分数的大小不变。根据分数的基本性质,可以化简分数和通分。 二、数的运算 一、整数、小数、分数四则运算的意义 乘法的意义:一个数乘整数是求几个相同加数和的简便运算;一个数与小数相乘可以看成是求这个数的十分之几、百分之几……是多少;一个数与分数相乘可以看成是求这个数的几分之几是多少。(重点讲解) 从他们的意义中可以知道:减法是加法的逆运算,除法是乘法的逆运算。可以运用运算间的这种关系进行验算。 二、运算形式 口算、笔算、估算、用计算器计算,同时进一步明确口算、笔算、估算的基本要求,这是计算能力的保底要求。第87页第1题明确了应该掌握的口算:两位数加、减两位数(和不超过100)及相应的小数加、减法;两位数乘、除以一位数(积不超过100)及相应的小数乘、除法;简单的分数四则运算。第2题明确了应该掌握的笔算:三位数的加、减法及相应的小数加减法;三位数乘、除以两位数及相应的小数乘除法;比较简单的分数四则计算。第3题是应能进行的估算:估计三位数加、减法的结果大约是几百(或比几百多一些,比几百少一些);估计两位数乘两位数的积大约是几千(几千几百)。另外,如果三位数除以两位数的商是两位数,说出商是几十多。 三、四则混合运算的顺序 同级运算:在一个只有加减或乘除的算式里,按照从左到右的顺序进行计算。 二级运算:在一个既有加减又有乘除的算式中,按照先乘除后加减的顺序进行计算。 在有括号的算式中,先算小括号里的,再算中括号里的,最后算大括号里的。 四、运算法则 加减法的法则:计算整数加减法把相同数位对齐,计算小数加减法要把小数点对齐,计算分数加减法要先通分化成同分母分数,其实质都是要把相同计算单位的数相加减。 乘除法的法则:小数乘除法通常转化成整数乘除法进行计算,然后考虑积或商的小数点定位;分数除法通常转化成分数乘法进行计算。 五、运算定律和性质 加法交换律: A+B=B+A 加法结合律:(A+B)+C=A+(B+C) 乘法交换律: A×B=B×A 乘法结合律: A×B×C=A×(B×C) 乘法分配律: (A+B)×C=A×C+B×C 减法性质: A-B-C=A-(B+C) 除法性质: A÷B÷C=A÷(B×C) A×C-B×C=(A-B)×C (A+B)÷C=A÷C+B÷C 六、探索运算规律 计算的过程,不仅仅是运用计算法则机械演算的过程,也是观察分析、不断探索和总结各种运算规律的过程。一般,探索运算规律分成这几个阶段: 计算给定的题组或试算简单的几道题→观察算式和计算结果有何特点→比较找出不同算式的共同之处,形成规律的猜测→自主举例进一步验证规律→周密思考中确认规律。 运算规律: 积的变化规律:一个因数不变,另一个因数乘几,得到的积等于原来的积乘几。 商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。 (商不变规律与小数的基本性质、分数的基本性质的内在关系) 三、式与方程 一、用字母表示数 1、 用字母表示数的意义 ①用字母不仅可以表示未知数,还可以表示已知量;不仅可以表示特定的数,还可以表示一定范围内变化着的数。 ②含有字母的式子可以看作数量间的关系,也可以看做运算的结果。 2、用字母表示数的规则 ①数字与字母、字母与字母相乘时,乘号可以记作“· ”,或者省略不写,数字要写在字母的前面。 ②当1与任何字母相乘时,1省略不写。 ③在一个问题中,不同的量用不同的字母来表示,而不能用同一个字母表示。 ④用含有字母的式子表示问题的答案时,除法结果一般要写成分数形式;如果式子中有加、减、乘、除运算时,要先进行适当的运算,再用括号把含有字母的式子括起来,并在括号后面写上单位名称。 ⑤具体问题中,字母表示的数总是有一定范围的。 3、用字母表示常见的数量关系 如路程、速度和时间的关系(s、v、t)和总价、单价和数量的关系(a、b、c)等 4、 用字母表示运算定律和运算性质 加法交换律、结合律;乘法交换律、结合律和分配律等 5、 用字母表示几何图形的周长、面积、体积计算公式。 二、简易方程 1、方程和等式 等式:表示相等关系的式子叫做等式。 方程:含有未知数的等式叫做方程。 他们的关系如下: 2、解方程。 解方程:求方程中未知数的值的过程叫做解方程。 解方程的依据:等式的性质。 ① 等式两边同时加上或减去同一个数,所得结果仍然是等式。 ② 等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。 3、列方程法解决问题的一般步骤 ①弄清题意,确定未知数并用x表示(也可以用其他字母表示)。 ②找出题中的数量之间的相等关系。 ③ 列方程,解方程。 ④ 检查或验算,写出答案。 四、比与比例 一、比与比例 比 比例 意义 两个数的比表示两个数相除。 表示两个比相等的式子叫做比例。 基本性质 比的前项和后项同时乘或除以相同的数(0除外),比值不变。 在比例里,两个外项的积等于两个内项的积。 二、比、分数与除法 比 前项 :(比号) 后项 比值 除法 被除数 ÷(除号) 除数 商 分数 分子 ——(分数线) 分母 分数值 三、求比值和化简比 一般方法 结果 求比值 根据比值的意义,用比的前项除以后项。 是一个数值,可以是整数,也可以是小数或分数。 化简比 根据比的基本性质,把比的前项和后项同时乘或同时除以相同的数(0除外)。 是一个最简单的整数比,即前项、后项是公因数只有1的两个数。 四、正比例和反比例 相同点 不同点 特征 关系式 正比例关系 两种相关联的量,一种量变化,另一种量也随着变化。 两种量中相对应的两个数的比的比值(也就是商)一定。 y/x=k(一定) 反比例关系 两种量中相对应的两个数的积一定。 X×y=k(一定) 五、比例尺 一幅图的比例尺是指图上距离与实际距离的比。即 图上距离:实际距离=比例尺 比例尺的种类:数字比例尺和线段比例尺 六、按比例分配 把一个数量按照一定的比来进行分配,这种分配的方法叫做按比例分配。 方法:①求出每一份表示多少,再根据分配的份数求出相应的结果。 ②根据两个量之间的关系,求出每一个量的结果。(乘法或除法都可) 第二单元、空间与图形 一、图形的认识、测量 (一)量的计量 1、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。 2、长度单位:(10) 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1米=100厘米 3、面积单位是用来测量物体的表面或平面图形的大小的。常用的面积单位有:平方千米、公顷、平方米、平方分米、平方厘米。 4、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。 5、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。 6、面积单位:(100) 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 7、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。 8、体积单位:(1000) 1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升 9、常用的质量单位有:吨、千克、克。 10、质量单位: 1吨=1000千克 1千克=1000克 11、常用的时间单位有:世纪、年、季度、月、旬、日、时、分、秒。 12、时间单位:(60) 1世纪=100年 1年=12个月 1年=4个季度 1个季度=3个月 1个月=3旬 大月=31天 小月=30天 平年二月=28天 闰年二月=29天 1天=24小时 1小时=60分 1分=60秒 13、高级单位的名数改写成低级单位的名数应该乘以进率; 低级单位的名数改写成高级单位的名数应该除以进率。 14、常用计量单位用字母表示: 千米:km 米:m 分米:dm 厘米:cm 毫米:mm 吨:t 千克:kg 克:g 升:l 毫升:ml (二)、平面图形【认识、周长、面积】 1、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。 2、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(埃?SPAN lang=EN-US> 3、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。 4、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。 5、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。 6、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。按边分,可以分为等边三角形、等腰三角形和任意三角形。 7、三角形的内角和等于180度。 8、在一个三角形中,任意两边之和大于第三边。 9、在一个三角形中,最多只有一个直角或最多只有一个钝角。 10、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。 11、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。 12、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。 13、围成一个图形的所有边长的总和就是这个图形的周长。 14、物体的表面或围成的平面图形的大小,叫做它们的面积。 15、平面图形的面积计算公式推导: 【1】平行四边形面积公式的推导过程? (1)把平行四边形通过剪切、平移可以转化成一个长方形。 (2)长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。 (3)因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。 【2】三角形面积公式的推导过程? (1)用两个完全一样的三角形可以拼成一个平行四边形。 (2)平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半 (3)因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。即:S=ah÷2。 【3】梯形面积公式的推导过程? (1)用两个完全一样的梯形可以拼成一个平行四边形。 (2)平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。 (3)因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。 【4】画图说明圆面积公式的推导过程? (1)把圆分成若干等份,剪开后,拼成了一个近似的长方形。 (2)长方形的长相当于圆周长的一半,宽相当于圆的半径。 (3)因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2。 16、平面图形的周长和面积计算公式: 长方形周长=(长+宽)×2 长方形面积=长×宽 正方形周长=边长×4 正方形面积=边长×边长 平行四边形面积=底×高 三角形面积=底×高÷2 梯形面积=(上底+下底)×高÷2 C=πd C=2πr r=d÷2 r=C÷2π d=2r d=÷π S=πr2 S=π()2 S=π()2 17、常用数据: 常用π值 常用平方数 2π=6.28 3π=9.42 4π=12.56 5π=15.70 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4 12π=37.68 15π=47.1 16π=50.24 18π=56.52 20π=62.8 25π= 78.5 32π=100.48 2.25π=7.065 6.25π=19.625 112=121 122=144 152=225 252=625 (三)、立体图形【认识表面积、体积】 1、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。 2、圆柱的特征:一个侧面、两个底面、无数条高。 3、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。 4、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。 5、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。 6、圆柱和圆锥三种关系: (1)等底等高:体积1︰3 (2)等底等体积:高1︰3 (3)等高等体积:底面积1︰3 7、等底等高的圆柱和圆锥: (1)圆锥体积是圆柱的1/3,(2)圆柱体积是圆锥的3倍, (3)圆锥体积比圆柱少2/3,(4)圆柱体积比圆锥多2倍。 8、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。 9、立体图形公式推导: 【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程) (十二册数学书21-22页) (1)圆柱的侧面展开后一般得到一个长方形。 (2)长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。 (3)因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。 (4)圆柱的侧面展开后还可能得到一个正方形。 正方形的边长=圆柱的底面周长=圆柱的高。 【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系? 图(十二册数学书25页) (1)把圆柱分成若干等份,切开后拼成了一个近似的长方体。 (2)长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。 (3)因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。 即:V=Sh。 【3】请画图说明圆锥体积公式的推导过程? (1)找来等底等高的空圆锥和空圆柱各一只。 (2)将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。 (3)通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=1/3Sh。 10、立体图形的棱长总和、表面积、体积计算公式: 长方体棱长总和=(长+宽+高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 长方体体积=长×宽×高 正方体棱长总和=棱长×12 正方体表面积=棱长×棱长×6 正方体体积=棱长×棱长×棱长 圆柱侧面积=底面周长×高 圆柱表面积=侧面积+底面积×2 圆柱体积=底面积×高 圆锥体积:V=1/3Sh 二、图形与变换 1、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。 2、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。 3、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。 (三)图形与位置 1、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、 后来描述具体位置。 2、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。 第三单元、统计与可能性 (一)统计 1、我们通常都是通过打勾、画圆、划“正”字的方法进行数据的收集和整理。 2、常见的统计图有条形统计图、折线统计图和扇形统计图三种。 3、条形统计图的特点:从图中能清楚地看出各种数量的多少,便于比较。 4、折线统计图的特点:不但能看出各种数量的多少,而且还能够清楚地表示出数量增减变化的情况。 5、扇形统计图的特点:表示各部分和总数之间,以及部分与部分之间的关系。 6、中位数、众数、平均数 名称 意义 计算方法 中位数 一组数中间的一个数或中间两个数的平均数。 中间的一个数或中间两个数的和÷2 众数 一组数中出现次数最多的数。 出现次数最多的数 平均数 反映一组数的总体水平的数据。 平均数=总数÷份数 (二)可能性 事件状态 生活情景 数学情景 一定会发生 太阳从东方升起 从5个红球中摸出一个红球 一定不会发生 鸭子会讲话 从5个红球中摸出一个白球 可能发生 今天会下雨 从5个红球,1个白球中摸出一个白球 2、在可能性相同的情况下,比赛游戏规则是公平的。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服