1、公约数、公倍数问题,是指用求几个数的(最大)公约数或(最小)公倍数的方法来解答的应用题。这类题一般都没有直接指明是求公约数或公倍数,要通过对已知条件的仔细分析,才能发现解题方法。解答公约数或公倍数问题的关键是:从约数和倍数的意义入手来分析,把原题归结为求几个数的公约数问题。例如:1、有一个长方体的木头,长3.25米,宽1.75米,厚0.75米。如果把这块木头截成许多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个数各是多少?解:根据题意,小立方体一条棱长应是长方体长、宽、厚各数的最大公约数。即:(325、175、75)=25(厘米)因为32525=1317525=77525=3所以
2、1373=273(个)答:能分为小立方体273个,小立方体的每条棱长为25厘米。2、 有一个两位数,除50余2,除63余3,除73余1。求这个两位数是 多少?解:这个两位数除50余2,则用他除48(522)恰好整除。也就是说,这个两位数是48的约数。同理,这个两位数也是60、72的约数。所以,这个两位数只可能是48、60、72的公约数1、2、3、4、6、12,而满足条件的只有公约数12,即(48、60、72)=12。答:这个两位数是12。几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。应
3、用最大公因数与最小公倍数方法求解的应用题,叫做公约数与公倍数问题。解题的关键是先求出几个数的最大公因数或最小公倍数,然后按题意解答要求的问题。三、考点分析最大公因数和最小公倍数的性质。(1)两个数分别除以它们的最大公因数,所得的商一定是互质数。(2)两个数的最大公因数的因数,都是这两个数的公因数,(3)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。四、典型例题例1、有三根铁丝,一根长18米,一根长24米,一根长30米。现在要把它们截成同样长的小段。每段最长可以有几米?一共可以截成多少段?分析与解:截成的小段一定是18、24、30的最大公因数。先求这三个数的最大公因数,再求一共可以
4、截成多少段。解答:(18、24、30)6(18+24+30)612段答:每段最长可以有6米,一共可以截成12段。例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。解答:(36、60)12(6012)(3612)15个答:正方形的边长可以是12厘米,能截15个正方形。例3、用96朵红玫瑰花和72朵白玫瑰花做花束。若每个花束里的红玫瑰花的朵数相同,
5、白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。解答:(1)最多可以做多少个花束(96、72)24(2)每个花束里有几朵红玫瑰花96244朵(3)每个花束里有几朵白玫瑰花72243朵(4)每个花束里最少有几朵花4+37朵例4、公共汽车站有三路汽车通往不同的地方。第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。三路汽车在同一时间发车以后,最少过多少
6、分钟再同时发车?分析与解:这个时间一定是5的倍数、10的倍数、6的倍数,也就是说是5、10和6的公倍数,“最少多少时间”,那么,一定是5、10、6的最小公倍数。解答:5、10、630答:最少过30分钟再同时发车。例5、某厂加工一种零件要经过三道工序。第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。要使流水线能正常生产,各道工序每小时至少安排几个工人最合理?分析与解:安排每道工序人力时,应使每道工序在相同的时间内完成同样多的零件个数。这个零件个数一定是每道工序每人每小时完成零件个数的公倍数。至少安排的人数,一定是每道工序每人每小时完成
7、零件个数的最小公倍数。解答:(1)在相同的时间内,每道工序完成相等的零件个数至少是多少?3、12、560(2)第一道工序应安排多少人60320人(3)第二道工序应安排多少人60125人(4)第三道工序应安排多少人60512人例6、有一批机器零件。每12个放一盒,就多出11个;每18个放一盒,就少1个;每15个放一盒,就有7盒各多2个。这些零件总数在300至400之间。这批零件共有多少个?分析与解:每12个放一盒,就多出11个,就是说,这批零件的个数被12除少1个;每18个放一盒,就少1个,就是说,这批零件的个数被18除少1;每15个放一盒,就有7盒各多2个,多了2714个,应是少1个。也就是说
8、,这批零件的个数被15除也少1个。解答:如果这批零件的个数增加1,恰好是12、18和15的公倍数。1、刚好能12个、18个或15个放一盒的零件最少是多少个12、18、151802、在300至400之间的180的倍数是多少18023603、这批零件共有多少个360-1359个例7、公路上一排电线杆,共25根。每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需要移动?分析与解:不需要移动的电线杆,一定既是45的倍数又是60的倍数。要先求45和60的最小公倍数和这条公路的全长,再求可以有几根不需要移动。解答:1、从第一根起至少相隔多少米的一根电线杆不需移动?45、60180(米)2、
9、公路全长多少米?45(25-1)1080(米)3、可以有几根不需要移动?1080180+17(根)例8、两个数的最大公因数是4,最小公倍数是252,其中一个数是28,另一个数是多少?分析与解:根据“两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。”先求出4与252的乘积,再用积去除以28即可。425228=100828=36【模拟试题】1、24的因数共有多少个?36的因数共有多少个?24和36的公因数是哪几个?其中最大的一个是?2、一个长方形的面积是323平方厘米,这个长方形的长和宽各是多少厘米?(长和宽都是素数)3、两个自然数的乘积是420,它们的最大公因数是12,求它们的最小公
10、倍数。4、两个自然数相乘的积是960,它们的最大公因数是8,这两个数各是多少?5、两个数的最小公倍数是126,最大公因数是6,已知两个数中的一个数是18,求另一个数。6、有一种长51厘米,宽39厘米的水泥板,用这种水泥板铺成一块正方形地,至少需要多少块水泥板?7、有三根铁丝长度分别为120厘米、90厘米、150厘米,现在要把它们截成相等的小段,每根无剩余,每段最长多少厘米?一共可以截成多少段?8、有两个不同的自然数,它们的和是48,它们的最大公因数是6,求这两个数。9、同学们参加野餐活动准备了若干个碗,如果每人分得3个碗或4个碗或5个碗,都正好分完,这些碗最少有多少个?10、有A、B两个两位数
11、,它们的最大公因数是6,最小公倍数是90,则A、B两个自然数的和是多少?【试题答案】1、24的因数共有多少个?36的因数共有多少个?24和36的公因数是哪几个?其中最大的一个是?答:24的因数共有8个,36的因数共有9个,24和36的公因数是1、2、3、4、6、12。其中最大的一个是12。2、一个长方形的面积是323平方厘米,这个长方形的长和宽各是多少厘米?(长和宽都是素数)答:长方形的长是19厘米,宽是17厘米。3、两个自然数的乘积是420,它们的最大公因数是12,求它们的最小公倍数。答:它们的最小公倍数是35。4、两个自然数相乘的积是960,它们的最大公因数是8,这两个数各是多少?答:这两
12、个数分别是24和40。5、两个数的最小公倍数是126,最大公因数是6,已知两个数中的一个数是18,求另一个数。答:另一个数是42。6、有一种长51厘米,宽39厘米的水泥板,用这种水泥板铺成一块正方形地,至少需要多少块水泥板?答:至少需要221块水泥板。7、有三根铁丝长度分别为120厘米、90厘米、150厘米,现在要把它们截成相等的小段,每根无剩余,每段最长多少厘米?一共可以截成多少段?答:每段最长30厘米,一共可以截成12段。8、有两个不同的自然数,它们的和是48,它们的最大公因数是6,求这两个数。答:这两个数是42和6或18和30。9、同学们参加野餐活动准备了若干个碗,如果每人分得3个碗或4个碗或5个碗,都正好分完,这些碗最少有多少个?答:这些碗最少有60个。10、有A、B两个两位数,它们的最大公因数是6,最小公倍数是90,则A、B两个自然数的和是多少?答:A、B两个自然数的和是48。