收藏 分销(赏)

人教版高数必修二第10讲:点、直线的距离和对称(教师版).doc

上传人:1587****927 文档编号:1282244 上传时间:2024-04-20 格式:DOC 页数:10 大小:1.29MB
下载 相关 举报
人教版高数必修二第10讲:点、直线的距离和对称(教师版).doc_第1页
第1页 / 共10页
人教版高数必修二第10讲:点、直线的距离和对称(教师版).doc_第2页
第2页 / 共10页
人教版高数必修二第10讲:点、直线的距离和对称(教师版).doc_第3页
第3页 / 共10页
人教版高数必修二第10讲:点、直线的距离和对称(教师版).doc_第4页
第4页 / 共10页
人教版高数必修二第10讲:点、直线的距离和对称(教师版).doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、点、直线的距离和对称一、距离问题 1. 设平面上两点,则为两点间距离2点P(x0,y0)到直线AxByC0(A2B20)的距离d|Ax0+By0+C|A2+B2.3两条平行直线l1:AxByC10与l2:AxByC20的距离d|C1-C2|A2+B2.二、对称问题1. 关于点对称问题(1)点关于点对称点关于点的对称点是特别地,点关于原点的对称点为(2)线关于点对称 已知的方程为:和点,则关于点的对称直线方程设是对称直线上任意一点,它关于的对称点在直线上,代入得此直线即为所求对称直线2. 关于线对称问题(1)点关于线对称 已知点,直线,设点关于直线的对称点为,则由得到一个关于的方程,又线段的中点

2、在直线得到另一个关于的方程,解方程组 即可求出点特别说明:点关于轴对称的点的坐标是,关于轴对称点的坐标是点关于直线的对称点坐标是,关于对称点为 (2)线关于线对称 已知,求直线关于直线对称直线如右图所示,在直线上任取不同于与交点的任一点,先求出点 关于直线的对称点的坐标,再由在上,用两点式求出直线的方程 常见的对称结论有:设直线 关于轴的对称的直线是:;关于轴的对称的直线是:;关于原点的对称的直线是:;关于的对称的直线是:;关于的对称的直线是:;类型一 点到直线的距离例1:求点P(3,2)到下列直线的距离:(1)3x4y10;(2)y6;(3)y轴解析:本题主要考查点到直线的距离公式的应用,直

3、接代入点到直线的距离公式即可答案:(1)由点到直线的距离公式可得d.(2)由直线y6与x轴平行,得d|6(2)|8.或将y6变形为0xy60,d8.(3)d|3|3.练习1:求点P(1,2)到直线2xy50的距离;答案:由点到直线距离公式d.练习2:点A(a,6)到直线3x4y2距离等于4,求a的值;答案:由点到直线的距离公式4,a2或.练习3:求过点A(1,2)且与原点距离等于的直线方程答案:设所求直线l:y2k(x1),原点O(0,0)到此直线距离为,可求得k1或7,所求直线方程为xy10或7xy50.例2:已知在ABC中,A(3,2)、B(1,5),C点在直线3xy30上若ABC的面积为

4、10,求C点坐标解析:本题易求|AB|5,C点到AB的距离即为ABC中AB边上的高设C(x0,y0),则y03x03,从而可建立x0的方程求解答案:设点C(x0,y0),点C在直线3xy30上,y03x03.A(3,2)、B(1,5),|AB|5.设C到AB的距离为d,则d|AB|10,d4.又直线AB的方程为,即3x4y170,d|3x01|4.3x014,解得x01或.当x01时,y00;当x0时,y08.C点坐标为(1,0)或(,8)练习1:求经过点P(1,2)的直线,且使A(2,3),B(0,5)到它的距离相等的直线方程答案:解法一:当直线斜率不存在时,即x1,显然符合题意,当直线斜率

5、存在时,设所求直线的斜率为k,即直线方程为y2k(x1),由条件得,解得k4,故所求直线方程为x1或4xy20.解法二:由平面几何知识知lAB或l过AB中点kAB4,若lAB,则l的方程为4xy20.若l过AB中点(1,1),则直线方程为x1,所求直线方程为:x1或4xy20.练习2:若动点,分别在直线上移动,则的中点到原点的距离的最小值是( ) A B C D答案:B类型二 两条平行线之间的距离例3:求两平行线l1:3x4y10和l2:3x4y15的距离解析:由题目可获取以下主要信息:直线l1与l2的方程已知;l1与l2平行解答本题可转化为点到直线的距离或直接利用两平行线间的距离公式或利用原

6、点到两平行线距离的差,从而求解答案:解法一:若在直线l1上任取一点A(2,1),则点A到直线l2的距离,即是所求的平行线间的距离如图所示,d1.解法二:设原点到直线l1、l2的距离分别为|OF|、|OE|,则由图可知,|OE|OF|即为所求|OE|OF|1,即两平行线间的距离为1.解法三:直线l1、l2的方程可化为3x4y100,3x4y150,则两平行线间的距离为d1.练习1:两平行直线x3y40与2x6y90的距离是_答案:练习2:已知平行线与,则与它们等距离的直线方程是( ) A B C D答案:B类型三 对称问题例4:点P(1,1)关于直线axyb0的对称点是Q(3,1),则a、b的值

7、依次是()A2,2B2,2C., D.,解析:设PQ的中点为M,则由中点坐标公式得M(1,0)点M在直线axyb0上,ab0.又PQ所在直线与直线axyb0垂直,a1,a2.故b2.答案:B练习1已知直线l:y3x3,求点P(4,5)关于直线l的对称点坐标答案:设点A(x,y)是点P关于直线l的对称点,A、P的中点在直线l上,33,即3xy130又AP与直线l垂直,31,即x3y190解、组成的方程组可得x2,y7,即所求点的坐标为(2,7)练习2:已知和是关于直线对称的两点,则直线的方程为( ) A B C D答案:D例5:在直线l:3xy10上求一点P,使得:(1)P到A(4,1)和B(0

8、,4)的距离之差最大;(2)P到A(4,1)和C(3,4)的距离之和最小解析:设点B关于l的对称点为B,AB与l的交点P满足(1);点C关于l的对称点为C,AC与l的交点P满足(2)事实上,对于(1),若P是l上异于P的点,则|PA|PB|PA|PB|AC|PA|PC|.答案:(1)如图所示,设点B关于直线l的对称点B的坐标为(a,b),则kBBkl1,即31.a3b120.又由于线段BB的中点坐标为A(,),且在直线l上,310,即3ab60.解得a3,b3,B(3,3)于是AB的方程为,即2xy90.由,解得.即直线l与AB的交点坐标为(2,5)点P(2,5)为所求(2)如图所示,设点C关

9、于直线l的对称点为C,求出点C的坐标为(,)AC所在直线的方程为19x17y930,AC和l的交点坐标为(,)故P点坐标为(,),为所求练习1:已知,直线(1)在上求一点,使的值最小;(2)在上求一点,使的值最小答案:(1)设点关于直线的对称点,则 解得 由两点式可得的方程为 又点应是和的交点 解方程组 得 所求点(2) 的方程为 由于直线与的交点即为所求 解方程组 得 所求点练习2:若动点,分别在直线上移动,则的中点到原点的距离的最小值是( ) A B C D答案:B1已知点,则的长及中点坐标分别是( ) A B C D 答案:B2若点到直线的距离等于,则的值是( ) A B C或 D或 答

10、案:D3过点且与原点的距离等于的直线方程是( ) A B C或 D或答案:C4若点到点及轴的距离相等,则的坐标是( ) A B C或 D以上全不对 答案:C5两平行线4x3y10与8x6y30之间的距离是()A. B.C. D. 答案:D6.若点P(x,y)在直线xy40上,O为原点,则|OP|的最小值是()A.B2C.D2答案: B7. 已知平行四边形相邻两边所在的直线方程是l1:x2y10和l2:3xy20,此四边形两条对角线的交点是(2,3),则平行四边形另外两边所在直线的方程是()A2xy70和x3y40Bx2y70和3xy40Cx2y70和x3y40D2xy70和3xy40答案:B8

11、. 两平行直线x3y50与x3y100的距离是_答案:9.已知正方形中心G(1,0),一边所在直线方程为x3y50,求其他三边所在直线方程答案:正方形中心G(1,0)到四边距离相等,均为 .设与已知直线平行的一边所在直线方程为x3yc10,由,c15(舍去)或c17.故与已知直线平行的一边所在直线方程为x3y70.设另两边所在直线方程为3xyc20.由,得c29或c23.另两边所在直线方程为3xy90或3xy30.综上可知另三边所在直线方程分别为:x3y70,3xy90或3xy30._基础巩固1已知点A(a,2)(a0)到直线l:xy30的距离为1,则a()A.B2C.1 D.1答案:C2过点

12、(1,2)且与原点距离最大的直线方程是()Ax2y50B2xy40Cx3y70D3xy50答案:A3P、Q分别为3x4y120与6x8y50上任一点,则|PQ|的最小值为()A. B.C. D.答案:C4过点A(3,1)的直线中,与原点距离最远的直线方程为_答案:3xy100能力提升5直线7x3y210上到两坐标轴距离相等的点的个数为()A3B2C1D0 答案:B6两平行直线l1,l2分别过点P(1,3)、Q(2,1),它们分别绕P、Q旋转,但始终保持平行,则l1,l2之间的距离的取值范围是()A(0,)B0,5C(0,5D0,答案:C7. 已知a、b、c为某一直角三角形的三边长,c为斜边,若

13、点P(m,n)在直线axby2c0上,则m2n2的最小值为_答案:48. 与三条直线l1:xy20,l2:xy30,l3:xy50,可围成正方形的直线方程为_ 答案:xy100或xy09. ABC的三个顶点是A(1,4)、B(2,1)、C(2,3)(1)求BC边的高所在直线的方程;(2)求ABC的面积S.答案:(1)设BC边的高所在直线为l,由题意知kBC1,则kl1,又点A(1,4)在直线l上,所以直线l的方程为y41(x1),即xy30.(2)BC所在直线方程为y11(x2),即xy10,点A(1,4)到BC的距离d2,又|BC|4,则SABC|BC|d428.10. 已知直线l经过点A(

14、2,4),且被平行直线l1:xy10与l2:xy10所截得的线段的中点M在直线xy30上求直线l的方程答案:解法一:点M在直线xy30上,设点M坐标为(t,3t),则点M到l1、l2的距离相等,即,解得t,M.又l过点A(2,4),由两点式得,即5xy60,故直线l的方程为5xy60.解法二:设与l1、l2平行且距离相等的直线l3:xyc0,由两平行直线间的距离公式得,解得c0,即l3:xy0.由题意得中点M在l3上,又点M在xy30上解方程组,得.M.又l过点A(2,4),故由两点式得直线l的方程为5xy60.解法三:由题意知直线l的斜率必存在,设l:y4k(x2),由,得.直线l与l1、l2的交点分别为,.M为中点,M.又点M在直线xy30上,30,解得k5.故所求直线l的方程为y45(x2),即5xy60.10

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服