收藏 分销(赏)

2025-2026学年北京师大附中数学高一第一学期期末监测试题含解析.doc

上传人:zj****8 文档编号:12790082 上传时间:2025-12-08 格式:DOC 页数:15 大小:783.50KB 下载积分:12.58 金币
下载 相关 举报
2025-2026学年北京师大附中数学高一第一学期期末监测试题含解析.doc_第1页
第1页 / 共15页
2025-2026学年北京师大附中数学高一第一学期期末监测试题含解析.doc_第2页
第2页 / 共15页


点击查看更多>>
资源描述
2025-2026学年北京师大附中数学高一第一学期期末监测试题 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1. “”是“函数为偶函数”() A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.已知函数,则下列结论错误的是( ) A.的一个周期为 B.的图象关于直线对称 C.的一个零点为 D.在区间上单调递减 3.设,则 A. B. C. D. 4.已知角的终边上一点,且,则() A. B. C. D. 5.设,,,则() A. B. C. D. 6.已知,且,对任意的实数,函数不可能 A.是奇函数 B.是偶函数 C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数 7.函数图像大致为() A. B. C. D. 8.若,且为第二象限角,则() A. B. C. D. 9. “”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充分且不必要条件 D.既不充分也不必要条件 10.下列函数中,既是奇函数又存在零点的函数是( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________ 12.设函数的图象关于y轴对称,且其定义域为,则函数在上的值域为________. 13.我国古代数学名著《续古摘奇算法》(杨辉著)一书中有关于三阶幻方的问题:将1, 2, 3, 4, 5, 6, 7, 8, 9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等 (如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是__________. 8 3 4 1 5 9 6 7 2 14.函数的定义域是______________. 15.如图,已知四棱锥P-ABCD,底面ABCD为正方形,PA⊥平面ABCD.给出下列命题:①PB⊥AC;②平面PAB与平面PCD的交线与AB平行;③平面PBD⊥平面PAC;④△PCD为锐角三角形.其中正确命题的序号是________ 16.某租赁公司拥有汽车100辆.当每辆车的月租金为元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.若使租赁公司的月收益最大,每辆车的月租金应该定为__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.函数中角的终边经过点,若时,的最小值为. (1)求函数的解析式; (2)求函数的单调递增区间. 18.设函数是增函数,对于任意都有 (1)写一个满足条件的; (2)证明是奇函数; (3)解不等式 19.汕头市某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. (1)求商家降价前每星期的销售利润为多少元? (2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少? 20.设函数,其中 (1)若当时取到最小值,求a的取值范围 (2)设的最大值为,最小值为,求的函数解析式,并求的最小值 21.已知,, ()求及 ()若的最小值是,求的值 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】根据充分必要条件定义判断 【详解】时,是偶函数,充分性满足, 但时,也是偶函数,必要性不满足 应是充分不必要条件 故选:A 2、B 【解析】根据周期求出f(x)最小正周期即可判断A; 判断是否等于1或-1即可判断是否是其对称轴,由此判断B; 判断否为0即可判断C; ,根据复合函数单调性即可判断f(x)单调性,由此判断D. 【详解】函数,最小正周期为故A正确; ,故直线不是f(x)的对称轴,故B错误; , 则,∴C正确; ,∴f(x)在上单调递减,故D正确. 故选:B. 3、B 【解析】因为, 所以.选B 4、B 【解析】由三角函数的定义可列方程解出,需注意的范围 【详解】由三角函数定义, 解得,由,知,则. 故选:B. 5、C 【解析】根据指数函数和对数函数的单调性判断,,的范围即可比较的大小. 【详解】因为,即, ,即, ,即, 所以, 故选:C. 6、C 【解析】, 当时,,为偶函数 当时,,为奇函数 当且时,既不奇函数又不是偶函数 故选 7、B 【解析】先求出函数的定义域,判断出函数为奇函数,排除选项D,由当时,,排除A,C选项,得出答案. 【详解】解析:定义域为, ,所以为奇函数,可排除D选项, 当时,,,由此,排除A,C选项, 故选: B 8、A 【解析】由已知利用诱导公式求得,进一步求得,再利用三角函数的基本关系式,即可求解 【详解】由题意,得, 又由为第二象限角,所以,所以 故选:A. 9、A 【解析】解指数不等式和对数不等式,求出两个命题的等价命题,进而根据充要条件的定义,可得答案 【详解】“”“”, “” “”, “”是“”的充分而不必要条件, 故“”是“”的的充分而不必要条件, 故选: 10、A 【解析】判断函数的奇偶性,可排除选项得出正确答案 【详解】因为是偶函数,故B错误;是非奇非偶函数,故C错误;是非奇非偶函数,故D错误; 故选:A. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】 当时,函数为减函数,且在区间左端点处有 令,解得 令,解得 的值域为, 当时,, 在,上单调递增,在上单调递减, 从而当时,函数有最小值,即为 函数在右端点的函数值为 的值域为, 则实数的取值范围是 点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案 12、 【解析】∵函数的图象关于y轴对称,且其定义域为 ∴,即,且为偶函数 ∴,即 ∴ ∴函数在上单调递增 ∴, ∴函数在上的值域为 故答案为 点睛:此题主要考查函数二次函数图象对称的性质以及二次函数的值域的求法,求解的关键是熟练掌握二次函数的性质,本题理解对称性很关键 13、8 【解析】三阶幻方,是最简单的幻方,由1,2,3,4,5,6,7,8,9.其中有8种排法 4 9 2、3 5 7、8 1 6;2 7 6、9 5 1、4 3 8; 2 9 4、7 5 3、6 1 8;4 3 8、9 5 1、2 7 6; 8 1 6、3 5 7、4 9 2;6 1 8、7 5 3、2 9 4; 6 7 2、1 5 9、8 3 4;8 3 4、1 5 9、6 7 2 故答案为:8 14、 【解析】根据表达式有意义列条件,再求解条件得定义域. 【详解】由题知, ,整理得 解得. 所以函数定义域是. 故答案为:. 15、②③ 【解析】设AC∩BD=O,由题意证明AC⊥PO,由已知可得AC⊥PA,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾说明①错误;由线面平行的判定和性质说明②正确;由线面垂直的判定和性质说明③正确;由勾股定理即可判断,说明④错误 【详解】设AC∩BD=O,如图, ①若PB⊥AC,∵AC⊥BD,则AC⊥平面PBD,∴AC⊥PO, 又PA⊥平面ABCD,则AC⊥PA,在平面PAC内过P有两条直线与AC垂直,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾,①错误; ②∵CD∥AB,则CD∥平面PAB,∴平面PAB与平面PCD的交线与AB平行,②正确; ③∵PA⊥平面ABCD,∴平面PAC⊥平面ABCD, 又BD⊥AC,∴BD⊥平面PAC,则平面PBD⊥平面PAC,③正确; ④∵PD2=PA2+AD2,PC2=PA2+AC2,AC2=AD2+CD2,AD=CD, ∴PD2+CD2=PC2, ∴④△PCD为直角三角形,④错误, 故答案为:②③ 16、4050 【解析】设每辆车的月租金定为元,则租赁公司的月收益: 当时, 最大,最大值为,即当每车辆的月租金定为元时,租赁公司的月收益最大,最大月收益是,故答案为. 【思路点睛】本题主要考查阅读能力、数学建模能力和化归思想以及几何概型概率公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.解答本题的关键是:将租赁公司的月收益表示为关于每辆车的月租金的函数,然后利用二次函数的性质解答. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2), 【解析】(1)根据角的终边经过点求,再由题意得周期求即可; (2)根据正弦函数的单调性求单调区间即可. 【小问1详解】 因为角的终边经过点, 所以, 若时,的最小值为可知 , ∴ 【小问2详解】 令, 解得 故单调递增区间为:, 18、(1), (2)见解析(3) 【解析】(1)满足是增函数,对于任意都有的函数 (2)利用函数的奇偶性的定义转化求解即可 (3)利用已知条件转化不等式,通过函数的单调性转化求解即可 【小问1详解】 因为函数是增函数,对于任意都有,这样的函数很多,其中一种为:,证明如下: 函数满足是增函数,,所以满足题意. 【小问2详解】 令,则由 得, 即得,故是奇函数 【小问3详解】 ,所以,则 ,因为,所以 ,所以,又因为函数是增函数,所以 ,所以或.所以的解集为:. 19、(1)2400(元);(2)应将售价定为125元,最大销售利润是2500元. 【解析】(1)由销售利润=单件成本×销售量,即可求商家降价前每星期销售利润; (2)由题意得,根据二次函数的性质即可知最大销售利润及对应的售价. 【详解】(1)由题意,商家降价前每星期的销售利润为(元); (2)设售价定为元,则销售利润. 当时,有最大值2500. ∴应将售价定为125元,最大销售利润是2500元. 20、(1) (2),最小值为. 【解析】(1)求得函数的导数,令,要使得函数在取到最小值,则函数必须先减后增,列出方程组,即可求解; (2)由(1)知,若时,得到函数在上单调递减,得到;若时,令,求得,分,, 三种情况讨论,求得函数的解析式,利用一次函数、换元法和二次函数的性质,即可求解. 【小问1详解】 解:由函数,可得, 令, 要使得函数在取到最小值,则函数必须先减后增, 则满足,解得, 即实数取值范围为. 【小问2详解】 解:由(1)知,设, 若时,即时,,即,函数在上单调递减, 所以,可得; 若时,即时, 令,即,解得或, ①当时,即时,在恒成立,即, 可得函数在上单调递增,所以,可得; ②当时,即时,在恒成立,即, 可得函数在上单调递减,所以, 可得; ③当时,即时, 当时,,即,单调递减; 当时,,即,单调递增, 所以当时,函数取得最小值,即, 又由,可得, (i)当时,,即,所以, 此时; (ii)当时,,即,所以, 此时, 综上可得,函数的解析式为, 当时,; 当时,; 当时,令,则,可得, 根据二次函数的性质,可得当时,函数取得最小值,最小值为; 当时,令,则,可得, 则, 综上可得,函数的最小值为. 21、(1);(2). 【解析】(1)利用平面向量的数量积公式、模长公式求解; (2)将的值域,转化为关于的一元二次函数的值域,根据 【详解】(1), , (2),, , , 当时,当且仅当时,取最小值,解得; 当时,当且仅当时,取最小值,解得(舍); 当时,当且仅当时,取最小值,解得(舍去), 综上所述,. 【点睛】本题主要考查求平面向量的数量积,向量的模,以及由函数的最值求参数的问题,熟记平面向量数量积的坐标表示,向量模的坐标表示,以及三角函数的性质即可,属于常考题型.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服