收藏 分销(赏)

2025年安徽省宿州市埇桥区数学高一上期末达标检测模拟试题含解析.doc

上传人:zj****8 文档编号:12773523 上传时间:2025-12-05 格式:DOC 页数:14 大小:584KB 下载积分:12.58 金币
下载 相关 举报
2025年安徽省宿州市埇桥区数学高一上期末达标检测模拟试题含解析.doc_第1页
第1页 / 共14页
2025年安徽省宿州市埇桥区数学高一上期末达标检测模拟试题含解析.doc_第2页
第2页 / 共14页


点击查看更多>>
资源描述
2025年安徽省宿州市埇桥区数学高一上期末达标检测模拟试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.函数的零点个数为() A.2 B.3 C.4 D.5 2.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则图中阴影部分表示的集合的真子集有(  )个 A.3 B.4 C.7 D.8 3.下列函数中最小正周期为的是 A. B. C. D. 4.若是第二象限角,是其终边上的一点,且,则() A. B. C. D.或 5.函数f(x)=lnx+3x-7的零点所在的区间是(  ) A. B. C. D. 6.设函数,若关于的方程有四个不同的解,且,则的取值范围是( ) A. B. C. D. 7.已知是自然对数的底数,函数的零点为,函数的零点为,则下列不等式中成立的是 A. B. C. D. 8.若方程表示圆,则实数的取值范围是 A. B. C. D. 9.,是两个平面,,是两条直线,则下列命题中错误的是( ) A.如果,,,那么 B.如果,,那么 C.如果,,,那么 D.如果,,,那么 10.若圆上至少有三个不同的点到直线的距离为,则的取值范围是() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数,现有如下几个命题: ①该函数为偶函数;  ②是该函数的一个单调递增区间; ③该函数的最小正周期为; ④该函数的图像关于点对称; ⑤该函数的值域为. 其中正确命题的编号为 ______ 12.若,则= _________ . 13.已知扇形的弧长为,且半径为,则扇形的面积是__________. 14.已知扇形半径为8, 弧长为12, 则中心角为__________弧度, 扇形面积是________ 15.写出一个同时具有下列三个性质的函数:___________.①函数为指数函数;②单调递增;③. 16.已知函数 若函数有三个不同的零点,且,则的取值范围是____ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.如图,正方形的边长为,,分别为边和上的点,且的周长为2. (1)求证:; (2)求面积的最小值. 18.已知函数,其中. (1)求函数的定义域; (2)若函数的最大值为2.求a的值. 19.已知圆M与x轴相切于点(a,0),与y轴相切于点(0,a),且圆心M在直线上.过点P(2,1)直线与圆M交于两点,点C是圆M上的动点. (1)求圆M的方程; (2)若直线AB的斜率不存在,求△ABC面积的最大值; (3)是否存在弦AB被点P平分?若存在,求出直线AB的方程;若不存在,说明理由. 20.在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点 (Ⅰ)求证:面; (Ⅱ)求点到面的距离 21.(1)计算:. (2)若,求的值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】先用诱导公式得化简,再画出图象,利用数形结合即可 【详解】由三角函数的诱导公式得,函数的零点个数,即方程的根的个数,即曲线()与的公共点个数.在同一坐标系中分别作出图象,观察可知两条曲线的交点个数为3,故函数的零点个数为3 故选:B. 2、C 【解析】先求出A∩B={3,5},再求出图中阴影部分表示的集合为:CU(A∩B)={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数 【详解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},图中阴影部分表示的集合为:CU(A∩B)={1,2,4},∴图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C 【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题 3、A 【解析】利用周期公式对四个选项中周期进行求解 【详解】A项中Tπ, B项中T, C项中T, D项中T, 故选A 【点睛】本题主要考查了三角函数周期公式的应用.对于带绝对值的函数解析式,可结合函数的图象来判断函数的周期 4、C 【解析】根据余弦函数的定义有,结合是第二象限角求解即可. 【详解】由题设,,整理得,又是第二象限角, 所以. 故选:C 5、C 【解析】由函数的解析式求得f(2)f(3)<0,再根据根据函数零点的判定定理可得函数f(x)的零点所在的区间 【详解】∵函数f(x)=lnx+3x-7在其定义域上单调递增, ∴f(2)=ln2+2×3-7=ln2-1<0,f(3)=ln3+9-7=ln3+2>0, ∴f(2)f(3)<0. 根据函数零点的判定定理可得函数f(x)的零点所在的区间是(2,3), 故选C 【点睛】本题主要考查求函数的值,函数零点的判定定理,属于基础题 6、D 【解析】由题意,根据图象得到,,,,, 推出.令,,而函数.即可求解. 【详解】 【点睛】方法点睛: 已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 7、A 【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x, 由g(x)=lnx+x﹣2=0得lnx=2﹣x, 作出函数y=ex,y=lnx,y=2﹣x的图象如图: ∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b, ∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b, 由图象知a<1<b, 故选A 考点:函数的零点 8、A 【解析】由二元二次方程表示圆的充要条件可知:,解得,故选A 考点:圆的一般方程 9、D 【解析】A.由面面垂直的判定定理判断;B.由面面平行的性质定理判断;C.由线面平行的性质定理判断;D.由平面与平面的位置关系判断; 【详解】A.如果,,,由面面垂直的判定定理得,故正确; B.如果,,由面面平行的性质定理得,故正确; C.如果,,,由线面平行的性质定理得,故正确; D如果,,,那么相交或平行,故错误; 故选:D 【点睛】本题主要考查空间中线线、线面、面面间的位置关系,还考查了理解辨析和逻辑推理的能力,属于中档题. 10、D 【解析】先整理圆的方程为可得圆心和半径,再转化问题为圆心到直线的距离小于等于,进而求解即可 【详解】由题,圆标准方程为, 所以圆心为,半径, 因为圆上至少有三个不同点到直线的距离为, 所以, 所以圆心到直线的距离小于等于,即, 解得, 故选:D 【点睛】本题考查直线与圆的位置关系的应用,考查圆的一般方程到圆的标准方程的转化,考查数形结合思想 二、填空题:本大题共6小题,每小题5分,共30分。 11、②③ 【解析】由于为非奇非偶函数, ①错误.,此时,其在上为增函数, ②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③. 12、 【解析】分析和的关系可知,然后用余弦的二倍角公式求解即可. 【详解】∵, ∴ . 故答案为:. 13、## 【解析】由扇形面积公式可直接求得结果. 【详解】扇形面积. 故答案为:. 14、. 【解析】详解】试题分析:根据弧长公式得,扇形面积 考点:弧度制下弧长公式、扇形面积公式的应用 15、(答案不唯一) 【解析】根据给定条件①可得函数的解析式,再利用另两个条件判断作答. 【详解】因函数是指数函数,则令,且,于是得, 由于单调递增,则,又,解得,取, 所以. 故答案为:(答案不唯一) 16、; 【解析】作图可知: 点睛:利用函数零点情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解. (3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)证明见解析;(2). 【解析】(1)补形得证明其与全等,从而得证. (2)引进参数,由已知建立参数变量之间的等量关系,再用方程根的判别式获得变量最值,进一步得到所求面积最值. 【详解】(1)如图:延长至,使,连接,则. 故,,. 又. ,即. (2)设,,,则, ,, 于是, 整理得:, . 即. 又,,当且仅当时等式成立. 此时, 因此当,时,取最小值. 的最小值为. 【点睛】方法点睛:引进参数建立参变量方程,再变换主次元,利用方程根的判别式,确定参数取值范围是求最值的方法之一. 18、(1);(2). 【解析】(1)根据对数的性质进行求解即可; (2)根据对数的运算性质,结合配方法、对数复合函数的单调性进行求解即可. 【详解】(1)要使函数有意义,则有, 解得, 所以函数的定义域为. (2)函数可化. 因为,所. 因,所以, 即, 由,解得. 19、(1) (2) (3)存在,方程为 【解析】(1)根据圆与坐标轴相切表示出圆心坐标,结合已知可解; (2)注意到当点C到直线AB距离最大值为圆心到直线距离加半径,然后可解; (3)根据圆心与弦的中点的连线垂直弦,或利用点差法可得. 【小问1详解】 ∵圆M与x轴相切于点(a,0),与y轴相切于点(0,a), ∴圆M的圆心为M(a,a),半径. 又圆心M在直线上, ∴,解得. ∴圆M的方程为:. 【小问2详解】 当直线AB的斜率不存在时,直线AB的方程为, ∴由,解得. ∴. 易知圆心M到直线AB的距离, ∴点C到直线AB的最大距离为. ∴△ABC面积的最大值为. 【小问3详解】 方法一:假设存在弦AB被点P平分,即P为AB的中点. 又∵,∴. 又∵直线MP的斜率为, ∴直线AB的斜率为-. ∴. ∴存在直线AB的方程为时,弦AB被点P平分. 方法二:由(2)易知当直线AB的斜率不存在时,, ∴此时点P不平分AB. 当直线AB的斜率存在时,,假设点P平分弦AB. ∵点A、B是圆M上的点,设,. ∴ 由点差法得. 由点P是弦AB的中点,可得, ∴. ∴ ∴存在直线AB的方程为时,弦AB被点P平分. 20、(Ⅰ)证明见解析;(Ⅱ) 【解析】(1)取中点,连结,,∵,分别为,的中点, ∴可证得,,∴四边形是平行四边形, ∴,又∵平面,平面, ∴面 (2)∵, ∴ 21、(1);(2) 【解析】(1)根据指数幂运算、对数加法运算以及三角函数的诱导公式一,化简即可求出结果; (2)利用诱导公式和同角的基本关系,对原式化简,可得,再将代入,即可求出结果. 【详解】解:(1)原式 . (2)因为, 所以 .
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服