收藏 分销(赏)

高考数学复习第五章数列第2讲等差数列配套理市赛课公开课一等奖省名师优质课获奖PPT课件.pptx

上传人:快乐****生活 文档编号:12674316 上传时间:2025-11-22 格式:PPTX 页数:34 大小:713.97KB 下载积分:10 金币
下载 相关 举报
高考数学复习第五章数列第2讲等差数列配套理市赛课公开课一等奖省名师优质课获奖PPT课件.pptx_第1页
第1页 / 共34页
高考数学复习第五章数列第2讲等差数列配套理市赛课公开课一等奖省名师优质课获奖PPT课件.pptx_第2页
第2页 / 共34页


点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,第,2,讲等差数列,1/34,考纲要求,考点分布,考情风向标,1.了解等差数列概念.,2.掌握等差数列通项公式与前n项和公式.,3.能在详细问题情境中识别数列等差关系,并能用相关知识处理对应问题.,4.了解等差数列与一次函数关系,新课标第17题考查等比数列前n项和、等差数列基本知识;,新课标第17题(1)考查公式法求数列通项;,新课标第16题考查等差数列最值问题;,新课标第17题(1)考查公式法求数列通项;,新课标第7题考查等差数列基本运算;,新课标第3题考查等差数列基本运算;,新课标第4题考查等差数列基本运算,1.对高考常考等差数列定义与性质、通项公式、前n项和公式等概念要记熟记准,并能熟练应用.,2.掌握等差数列判断方法及等差数列求和方法.,3.日常学习过程中,能经过题目强化对基础知识认识、了解和应用,方便处理与其它章节有联络题目,2/34,1.,等差数列定义,假如一个数列从第,2,项起,每一项与它前一项差等于,同,一个常数,那么这个数列就叫做等差数列,这个常数叫做等,差数列公差,通惯用字母,_,表示,.,d,2.,等差数列通项公式,假如等差数列,a,n,首项为,a,1,,公差为,d,,那么它通项公,式是,a,n,a,1,(,n,1),d,.,3/34,3.,等差中项,假如,A,a,b,2,,那么,A,叫做,a,与,b,等差中项,.,4.,等差数列前,n,项和公式,4/34,5.,等差数列前,n,项和公式与函数关,系,数列,a,n,是等差数列,S,n,An,2,Bn,(,A,,,B,为常数,).,6,.,等差数列惯用性质,(1),若数列,a,n,是等差数列,则数列,a,n,p,,,pa,n,(,p,是常数,),都是等差数列,.,(2),若,m,n,p,q,(,m,,,n,,,p,,,q,N,*,),,则,a,m,a,n,a,p,a,q,;,尤其地,若,m,n,2,p,(,m,,,n,,,p,N,*,),,则,a,m,a,n,2,a,p,.,5/34,(4),若等差数列,a,n,前,n,项和为,S,n,,则,S,k,,,S,2,k,S,k,,,S,3,k,S,2,k,,,S,4,k,S,3,k,是等差数列,.,(5),等差数列单调性:若公差,d,0,,则数列单调递增;若公差,d,0,,,d,0,,则,S,n,存在最大值;若,a,1,0,,则,S,n,存在最,_,值,.,小,6/34,B,1.,(,年重庆,),在等差数列,a,n,中,若,a,2,4,,,a,4,2,,则,a,6,(),A.,1 B.0 C.1 D.6,解析:,由等差数列性质,得,a,6,2,a,4,a,2,2,2,4,0.,故选,B.,7/34,27,8/34,B,3.,在等差数列,a,n,中,,a,1,2,,,a,3,a,5,10,,则,a,7,(),A.5 B.8,C.10 D.14,解析:,方法一,,a,1,2,,,a,3,a,5,2,a,1,6,d,4,6,d,10,,,d,1,,则,a,7,a,1,6,d,8.,方法二,,a,1,2,,,a,3,a,5,10,a,1,a,7,,,a,7,8.,9/34,B,4.,在等差数列,a,n,中,,a,3,a,9,27,a,6,,,S,n,表示数列,a,n,前,n,项和,则,S,11,(),A,.,18,B,.,99,C,.,198,D,.,297,解析:,因为,a,3,a,9,27,a,6,,2,a,6,a,3,a,9,,所以,3,a,6,27.,10/34,考点,1,等差数列基本运算,例,1,:,(1),(,年新课标,),记,S,n,为等差数列,a,n,前,n,项和,.,若,a,4,a,5,24,,,S,6,48,,则,a,n,公差为,(,),A.1 B.2 C.4 D.8,解析:,方法一,设公差为,d,,,a,4,a,5,a,1,3,d,a,1,4,d,2,a,1,7,d,24,,,11/34,答案:,C,12/34,(2),(,年新课标,),已知等差数列,a,n,前,9,项和为,27,,,a,10,8,,则,a,100,(,),A.100,B.99,C.98,D.97,1,,,d,1,,,a,100,a,1,99,d,1,99,98.,故选,C.,答案:,C,13/34,(3),(,年新课标,),已知,a,n,是公差为,1,等差数列,,S,n,为,a,n,前,n,项和,若,S,8,4,S,4,,则,a,10,(,),答案:,B,14/34,答案:,C,(4),(,年新课标,),设等差数列,a,n,前,n,项和为,S,n,,,S,m,1,2,,,S,m,0,,,S,m,1,3,,则,m,(,),A.3 B.4 C.5 D.6,解析:,因为,S,m,S,m,1,a,m,2,,,S,m,1,S,m,a,m,1,3,,所以,a,m,1,a,m,d,1.,15/34,【,规律方法,】,在处理等差数列问题时,已知,a,1,,,a,n,,,d,,,n,,,S,n,中任意三个,可求其余两个,称为,“,知三求二,”.,而求得,a,1,和,d,是处理等差数列,a,n,全部运算基本思想和方法,.,16/34,考点,2,等差数列基本性质及应用,例,2,:,(1),设等差数列,a,n,前,n,项和为,S,n,,且,S,5,10,,,S,10,30,,则,S,15,(,),A.60 B.70 C.90 D.40,解析:,因为数列,a,n,为等差数列,所以,S,5,,,S,10,S,5,,,S,15,S,10,也成等差数列,.,设,S,15,x,,,则,10,20,,,x,30,成等差数列,.,所以,2,20,10,(,x,30).,所以,x,60.,即,S,15,60.,答案:,A,17/34,(2),若一个等差数列前,3,项和为,34,,最终,3,项和为,146,,,且全部项和为,390,,则这个数列项数为,(,),A.13,B.12,C.11,D.10,答案:,A,解析:,a,1,a,2,a,3,34,,,a,n,2,a,n,1,a,n,146,,,a,1,a,2,a,3,a,n,2,a,n,1,a,n,34,146,180.,又,a,1,a,n,a,2,a,n,1,a,3,a,n,2,,,3(,a,1,a,n,),180.,a,1,a,n,60.,18/34,A.7,B.14,C.24,D.48,答案:,B,(3),(,年广东调研,),已知,S,n,是等差数列,a,n,前,n,项和,若,4,S,6,3,S,8,96,,则,S,7,(,),19/34,(4),能够把,a,n,与,S,n,结合起来,给计算带来很大便,利,是处理,等差数列有效方法,.“,巧用性质、降低运算量”在等差数列、,等比数列计算中非,常主要,但也要用好,“,基本量法,”,利用,方程思想“,知三求二,”.,【,规律方法,】,(1),利用等差数列,a,n,性质,“,若,m,n,p,q,(,m,,,n,,,p,,,q,N,*,),,则,a,m,a,n,a,p,a,q,”.,(2),等差数列,a,n,前,n,项和为,S,n,,则,S,k,,,S,2,k,S,k,,,S,3,k,S,2,k,,,S,4,k,S,3,k,是等差数列,.,20/34,【,互动探究,】,A.4,C.5,B.,4,D.,5,1,.,(,年广东深圳第二次调研,),在等差数列,a,n,中,若前,10,项和,S,10,60,,且,a,7,7,,则,a,4,(),21/34,答案:,C,22/34,考点,3,等差数列前,n,项和最值问,题,例,3,:,(1),(,年新课标,),等差数列,a,n,前,n,项和为,S,n,,已知,S,10,0,,,S,15,25,,则,nS,n,最小值为,_.,解析:,设等差数列,a,n,首项为,a,1,,公差为,d,,由等差数列前,n,项和公式可得,23/34,答案:,49,24/34,(2),若等差数列,a,n,满足,a,7,a,8,a,9,0,,,a,7,a,10,0,,则当,n,_,时,,a,n,前,n,项和最大,.,解析:,由等差数列性质,,a,7,a,8,a,9,3,a,8,,,a,8,0,,,a,7,a,10,0,,,a,8,a,9,0.,a,9,0.,公差,d,0.,故数列,a,n,前,8,项和最大,.,答案:,8,25/34,【,互动探究,】,2.,在等差数列,a,n,中,,a,1,7,,公差为,d,,前,n,项和为,S,n,,,当且仅当,n,8,时,,S,n,取最大值,则,d,取值范围为,_.,26/34,思想与方法,利用函数思想求等差数列最值,例题:,在等差数列,a,n,中,若,a,1,25,,,S,17,S,9,,则,S,n,最大值为,_.,思维点拨:,利用等差数列前,n,项和公式和二次函数性质求解,.,解析:,设公差为,d,.,方法一,由,S,17,S,9,,得,27/34,28/34,图,5-2-1,方法三,由,S,17,S,9,,得,a,10,a,11,a,17,0,,,而,a,10,a,17,a,11,a,16,a,12,a,15,a,13,a,14,,故,a,13,a,14,0.,d,20,,,a,13,0,,,a,14,0.,故当,n,13,时,,S,n,有最大值,169.,方法四,由,d,2,,得,S,n,图象如图,521(,图象上一些孤立点,).,29/34,由,S,17,S,9,,知图象对称轴为,n,9,17,2,13,,,故,当,n,13 时,,S,n,取得最大值 169.,答案:,169,【规律方法】,求等差数列前,n,项和最值惯用方法:,利用等差数列单调性,求出其正负转折项;利用等差数列,性质求出其正负转折项,便可求得和最值;将等差数列,前,n,项和,S,n,An,2,Bn,(,A,,,B,为常数,)看作二次函数,依据二,次函数性质或图象求最值.,30/34,【,互动探究,】,3.,设等差数列,a,n,前,n,项和为,S,n,,已知,a,3,12,,,S,12,0,,,S,13,0.,(1),求公差,d,取值范围;,(2),指出,S,1,,,S,2,,,,,S,12,中哪一个值最大,并说明理由,.,31/34,解:,(1),依题,意有,32/34,(2),方法一,由,d,0,,可知,a,1,a,2,a,3,a,12,a,13,.,所以,若在,1,n,12,中,存在自然数,n,,使得,a,n,0,,,a,n,1,0,,则,S,n,就是,S,1,,,S,2,,,,,S,12,中最大值,.,因为,S,12,6(,a,6,a,7,),0,,,S,13,13,a,7,0,,即,a,6,a,7,0,,,a,7,0,,由此得,a,6,a,7,0.,故在,S,1,,,S,2,,,,,S,12,中,S,6,值最大,.,方法二,由,d,0,,可知,a,1,a,2,a,3,a,12,a,13,.,所以,若在,1,n,12,中,存在自然数,n,,使得,a,n,0,,,a,n,1,0,,则,S,n,就是,S,1,,,S,2,,,,,S,12,中最大值,.,33/34,故在,S,1,,,S,2,,,,,S,12,中,S,6,值最大,.,34/34,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服