资源描述
单击此处编辑母版文本样式,第三级,第四级,第五级,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版文本样式,第三级,第四级,第五级,*,*,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版文本样式,第三级,第四级,第五级,*,*,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版文本样式,第三级,第四级,第五级,*,*,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版文本样式,第三级,第四级,第五级,*,*,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版文本样式,第三级,第四级,第五级,*,*,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版文本样式,第三级,第四级,第五级,*,*,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版文本样式,第三级,第四级,第五级,*,*,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版文本样式,第三级,第四级,第五级,*,*,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版文本样式,第三级,第四级,第五级,*,*,第六章 数列,高考总复习,数学文科,(,RJ,),单击此处编辑母版文本样式,第三级,第四级,第五级,*,*,6.2,等差数列及其前,n,项和,考纲要求,1.,了解等差数列概念,.2.,掌握等差数列通项公式与前,n,项和公式,.3.,能在详细问题情境中识别数列等差关系,并能用相关知识处理对应问题,.4.,了解等差数列与一次函数、二次函数关系,1/48,1,等差数列相关概念,(1),等差数列定义,普通地,假如一个数列从第,_,项起,每一项与它前一项差等于,_,,那么这个数列就叫做等差数列,这个常数叫做等差数列公差,通惯用字母,_,表示,定义表示式为,_,或,_,2,同一个常数,d,a,n,a,n,1,d,(,常数,)(,n,N,*,,,n,2),a,n,1,a,n,d,(,常数,)(,n,N,*,),2/48,3/48,3,等差数列惯用性质,(1),通项公式推广:,a,n,a,m,_,(,n,,,m,N,*,),(2),若,a,n,为等差数列,且,k,l,m,n,(,k,,,l,,,m,,,n,N,*,),,则,_,(3),若,a,n,是等差数列,公差为,d,,则,a,2,n,也是等差数列,公差为,_,(4),若,a,n,,,b,n,是等差数列,公差为,d,,则,pa,n,qb,n,也是等差数列,(,n,m,),d,a,k,a,l,a,m,a,n,2,d,4/48,(5),若,a,n,是等差数列,公差为,d,,则,a,k,,,a,k,m,,,a,k,2,m,,,(,k,,,m,N,*,),是公差为,_,等差数列,(6),数列,S,m,,,S,2,m,S,m,,,S,3,m,S,2,m,,,也是等差数列,(7),S,2,n,1,(2,n,1),a,n,.,md,5/48,【,思索辨析,】,判断下面结论是否正确,(,请在括号中打,“”,或,“,”,),(1),若一个数列从第二项起每一项与它前一项差都是常数,则这个数列是等差数列,(,),(2),数列,a,n,为等差数列充要条件是对任意,n,N,*,,都有,2,a,n,1,a,n,a,n,2,.(,),6/48,(3),等差数列,a,n,单调性是由公差,d,决定,(,),(4),数列,a,n,为等差数列充要条件是其通项公式为,n,一次函数,(5),数列,a,n,满足,a,n,1,a,n,n,,则数列,a,n,是等差数列,(,),(6),已知数列,a,n,通项公式是,a,n,pn,q,(,其中,p,,,q,为常数,),,则数列,a,n,一定是等差数列,(,),【,答案,】,(1),(2),(3),(4),(5),(6),7/48,1,(,重庆,),在等差数列,a,n,中,若,a,2,4,,,a,4,2,,则,a,6,等于,(,),A,1,B,0,C,1 D,6,【,解析,】,由等差数列性质,得,a,6,2,a,4,a,2,2,2,4,0,,选,B.,【,答案,】,B,8/48,2,(,全国卷,),已知等差数列,a,n,前,9,项和为,27,,,a,10,8,,则,a,100,(,),A,100 B,99,C,98 D,97,【,解析,】,设等差数列,a,n,公差为,d,,因为,a,n,为等差数列,且,S,9,9,a,5,27,,所以,a,5,3.,又,a,10,8,,解得,5,d,a,10,a,5,5,,所以,d,1,,所以,a,100,a,5,95,d,98,,选,C.,【,答案,】,C,9/48,3,在等差数列,a,n,中,已知,a,4,a,8,16,,则该数列前,11,项和,S,11,等于,(,),A,58 B,88,C,143 D,176,【,答案,】,B,10/48,4,设数列,a,n,是等差数列,若,a,3,a,4,a,5,12,,则,a,1,a,2,a,7,等于,(,),A,14 B,21,C,28 D,35,【,解析,】,a,3,a,4,a,5,3,a,4,12,,,a,4,4,,,a,1,a,2,a,7,7,a,4,28.,【,答案,】,C,11/48,5,已知数列,a,n,对任意,p,,,q,N,*,满足,a,p,q,a,p,q,q,,且,a,2,6,,那么,a,10,等于,(,),A,165 B,33,C,30 D,21,【,解析,】,由,a,p,q,a,p,a,q,,得,a,n,1,a,n,a,1,,,数列,a,n,成等差数列,且公差,d,a,1,.,a,2,a,1,d,6,,,得,a,1,d,3,,,a,10,3,9,(,3),30.,【,答案,】,C,12/48,题型一等差数列基本量运算,【,例,1,】,(1),(,浙江温州五校上学期开学测试,),已知等差数列,a,n,中第,2,项为,606,,前,4,项和,S,4,为,3 834,,则该数列第,4,项为,(,),A,2 004,B,3 005,C,2 424 D,2 016,13/48,14/48,【,答案,】,(1)D,(2)A,15/48,【,方法规律,】,(1),等差数列运算问题普通求法是设出首项,a,1,和公差,d,,然后由通项公式或前,n,项和公式转化为方程,(,组,),求解,(2),等差数列通项公式及前,n,项和公式,共包括五个量,a,1,,,a,n,,,d,,,n,,,S,n,,知其中三个就能求另外两个,表达了方程思想,16/48,跟踪训练,1,(1),(,课标全国,),设,S,n,是等差数列,a,n,前,n,项和,若,a,1,a,3,a,5,3,,则,S,5,等于,(,),A,5 B,7,C,9 D,11,(2),(,江苏,),已知,a,n,是等差数列,,S,n,是其前,n,项和若,a,1,a,3,,,S,5,10,,则,a,9,值是,_,17/48,【,答案,】,(1)A,(2)20,18/48,19/48,20/48,21/48,22/48,【,方法规律,】,等差数列四个判定方法,(1),定义法:证实对任意正整数,n,都有,a,n,1,a,n,等于同一个常数,(2),等差中项法:证实对任意正整数,n,都有,2,a,n,1,a,n,a,n,2,后,可递推得出,a,n,2,a,n,1,a,n,1,a,n,a,n,a,n,1,a,n,1,a,n,2,a,2,a,1,,依据定义得出数列,a,n,为等差数列,23/48,(3),通项公式法:得出,a,n,pn,q,后,得,a,n,1,a,n,p,对任意正整数,n,恒成立,依据定义判定数列,a,n,为等差数列,(4),前,n,项和公式法:得出,S,n,An,2,Bn,后,依据,S,n,,,a,n,关系,得出,a,n,,再使用定义法证实数列,a,n,为等差数列,24/48,跟踪训练,2,(,云南第一次统一检测,),已知等比数列,a,n,前,n,项和是,S,n,,,S,18,S,9,7,8.,(1),求证:,S,3,,,S,9,,,S,6,成等差数列;,(2),a,7,与,a,10,等差中项是否是数列,a,n,中项?假如是,是,a,n,中第几项?假如不是,请说明理由,25/48,26/48,27/48,题型三等差数列性质及应用,命题点,1,等差数列性质,【,例,3,】,(1),(,洛阳统考,),在等差数列,a,n,中,,a,3,a,9,27,a,6,,,S,n,表示数列,a,n,前,n,项和,则,S,11,(,),A,18,B,99,C,198 D,297,(2),(,常德一模,),已知,a,n,为等差数列,若,a,1,a,2,a,3,5,,,a,7,a,8,a,9,10,,则,a,19,a,20,a,21,_,28/48,29/48,【,答案,】,(1)B,(2)20,30/48,命题点,2,等差数列前,n,项和最值,【,例,4,】,在等差数列,a,n,中,已知,a,1,20,,前,n,项和为,S,n,,且,S,10,S,15,,求当,n,取何值时,,S,n,取得最大值,并求出它最大值,31/48,32/48,n,N,*,,,当,n,12,或,13,时,,S,n,有最大值,且最大值为,S,12,S,13,130.,方法三,由,S,10,S,15,得,a,11,a,12,a,13,a,14,a,15,0.,5,a,13,0,,即,a,13,0.,当,n,12,或,13,时,,S,n,有最大值,且最大值为,S,12,S,13,130.,【,引申探究,】,例,4,中,若条件,“,a,1,20,”,改为,a,1,20,,其它条件不变,求当,n,取何值时,,S,n,取得最小值,并求出最小值,33/48,34/48,35/48,36/48,跟踪训练,3,(1),等差数列,a,n,前,n,项和为,S,n,,已知,a,5,a,7,4,,,a,6,a,8,2,,则当,S,n,取最大值时,,n,值是,(,),A,5,B,6,C,7 D,8,(2),(,湖南株洲二中月考,),已知,S,n,是等差数列,a,n,前,n,项和,且,S,6,S,7,S,5,,给出以下五个命题:,d,0,;,S,11,0,;,S,12,0,;,数列,S,n,中最大项为,S,11,;,|,a,6,|,|,a,7,|.,其中正确命题个数是,(,),A,5 B,4,C,3 D,1,37/48,(3),已知等差数列,a,n,首项,a,1,20,,公差,d,2,,则前,n,项和,S,n,最大值为,_,【,解析,】,(1),依题意得,2,a,6,4,,,2,a,7,2,,,a,6,2,0,,,a,7,1,0,;又数列,a,n,是等差数列,所以在该数列中,前,6,项均为正数,自第,7,项起以后各项均为负数,于是当,S,n,取最大值时,,,n,6,,选,B.,38/48,39/48,【,答案,】,(1)B,(2)C,(3)110,40/48,高频小考点,6,等差数列前,n,项和及其最值,【,典例,】,(1),在等差数列,a,n,中,,2(,a,1,a,3,a,5,),3(,a,7,a,9,),54,,则此数列前,10,项和,S,10,等于,(,),A,45 B,60,C,75 D,90,(2),在等差数列,a,n,中,,S,10,100,,,S,100,10,,则,S,110,_,41/48,(3),等差数列,a,n,中,已知,a,5,0,,,a,4,a,7,0,,则,a,n,前,n,项和,S,n,最大值为,(,),A,S,4,B,S,5,C,S,6,D,S,7,【,思维点拨,】,(1),求等差数列前,n,项和,能够经过求解基本量,a,1,,,d,,代入前,n,项和公式计算,也能够利用等差数列性质:,a,1,a,n,a,2,a,n,1,;,(2),求等差数列前,n,项和最值,能够将,S,n,化为关于,n,二次函数,求二次函数最值,也能够观察等差数列符号改变趋势,找最终非负项或非正项,42/48,43/48,44/48,【,答案,】,(1)A,(2),110,(3)B,【,温馨提醒,】,(1),利用函数思想求等差数列前,n,项和,S,n,最值时,要注意到,n,N,*,;,(2),利用等差数列性质求,S,n,,突出了整体思想,降低了运算量,.,45/48,方法与技巧,1,在解相关等差数列基本量问题时,可经过列关于,a,1,,,d,方程组进行求解,2,证实等差数列要用定义;另外还能够用等差中项法,通项公式法,前,n,项和公式法判定一个数列是否为等差数列,46/48,3,等差数列性质灵活使用,能够大大降低运算量,4,在碰到三个数成等差数列问题时,可设三个数为,(1),a,,,a,d,,,a,2,d,;,(2),a,d,,,a,,,a,d,;,(3),a,d,,,a,d,,,a,3,d,等,可视详细情况而定,47/48,失误与防范,1,当公差,d,0,时,等差数列通项公式是,n,一次函数,当公差,d,0,时,,a,n,为常数,2,公差不为,0,等差数列前,n,项和公式是,n,二次函数,且常数项为,0.,若某数列前,n,项和公式是常数项不为,0,二次函数,则该数列不是等差数列,它从第二项起成等差数列,.,48/48,
展开阅读全文