资源描述
8.7,立体几何中向量方法,(,二,),求空间角和距离,1/101,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,2/101,基础知识自主学习,3/101,1.,两条异面直线所成角求法,设,a,,,b,分别是两异面直线,l,1,,,l,2,方向向量,则,知识梳理,l1与l2所成角,a与b夹角,范围,0,,,求法,cos,_,cos,2.,直线与平面所成角求法,设直线,l,方向向量为,a,,平面,法向量为,n,,直线,l,与平面,所成角为,,,a,与,n,夹角为,,则,sin,|cos,|,.,4/101,3.,求二面角大小,(1),如图,,,AB,,,CD,分别是二面角,l,两个面内与棱,l,垂直直线,则二面角大小,.,(2),如图,,,n,1,,,n,2,分别是二面角,l,两个半平面,,,法向量,则二面角大小,满足,|cos,|,,二面角平面角大小是向量,n,1,与,n,2,夹角,(,或其补角,).,|cos,n,1,,,n,2,|,5/101,知识拓展,利用空间向量求距离,(,供选取,),(1),两点间距离,设点,A,(,x,1,,,y,1,,,z,1,),,点,B,(,x,2,,,y,2,,,z,2,),,则,AB,.,(2),点到平面距离,如图所表示,已知,AB,为平面,一条斜线段,,n,为平面,法向量,则,B,到平面,距离为,.,6/101,思索辨析,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),两直线方向向量所成角就是两条直线所成角,.(,),(2),直线方向向量和平面法向量所成角就是直线与平面所成角,.,(,),(3),两个平面法向量所成角是这两个平面所成角,.(,),(4),两异面直线夹角范围是,(0,,,,直线与平面所成角范围是,0,,,,二面角范围是,0,,,.(,),7/101,(5),直线,l,方向向量与平面,法向量夹角为,120,,则,l,和,所成角为,30.,(,),(6),若二面角,a,两个半平面,,,法向量,n,1,,,n,2,所成角为,,则二面角,a,大小是,.(,),8/101,考点自测,1.(,南通模拟,),已知两平面法向量分别为,m,(0,1,0),,,n,(0,1,1),,则两平面所成二面角为,_.,答案,解析,45,或,135,即,m,,,n,45.,两平面所成二面角为,45,或,180,45,135.,9/101,2.,已知向量,m,,,n,分别是直线,l,和平面,方向向量和法向量,若,cos,m,,,n,,则,l,与,所成角为,_.,30,答案,解析,设,l,与,所成角为,,,cos,m,,,n,,,sin,|cos,m,,,n,|,,,0,90,,,30.,10/101,3.(,泰州模拟,),如图,在空间直角坐标系中有直三棱柱,ABC,A,1,B,1,C,1,,,CA,CC,1,2,CB,,则直线,BC,1,与直线,AB,1,所成角余弦值为,_.,答案,解析,设,CA,2,,则,C,(0,0,0),,,A,(2,0,0),,,B,(0,0,1),,,C,1,(0,2,0),,,B,1,(0,2,1),,,可得向量,(,2,2,1),,,(0,2,,,1),,,由向量夹角公式得,11/101,4.(,教材改编,),正三棱柱,(,底面是正三角形直棱柱,),ABC,A,1,B,1,C,1,底面,边长为,2,,侧棱长为,,则,AC,1,与侧面,ABB,1,A,1,所成角为,_.,答案,解析,12/101,以,A,为原点,以,,,(,AE,AB,),,,所在直线为坐标轴,(,如图,),建立空间直角坐标系,设,D,为,A,1,B,1,中点,,C,1,AD,为,AC,1,与平面,ABB,1,A,1,所成角,,又,C,1,AD,,,C,1,AD,.,13/101,5.,P,是二面角,AB,棱上一点,分别在平面,、,上引射线,PM,、,PN,,假如,BPM,BPN,45,,,MPN,60,,那么二面角,AB,大小为,_.,答案,解析,90,14/101,不妨设,PM,a,,,PN,b,,如图,,作,ME,AB,于,E,,,NF,AB,于,F,,,PE,a,,,PF,b,,,二面角,AB,大小为,90.,EPM,FPN,45,,,15/101,题型分类深度剖析,16/101,题型一求异面直线所成角,例,1,(,课标全国,),如图,四边形,ABCD,为菱形,,ABC,120,,,E,,,F,是平面,ABCD,同一侧两点,,BE,平面,ABCD,,,DF,平面,ABCD,,,BE,2,DF,,,AE,EC,.,(1),证实:平面,AEC,平面,AFC,;,证实,17/101,如图所表示,连结,BD,,设,BD,AC,G,,连结,EG,,,FG,,,EF,.,在菱形,ABCD,中,不妨设,GB,1.,由,ABC,120,,可得,AG,GC,.,由,BE,平面,ABCD,,,AB,BC,2,,可知,AE,EC,.,又,AE,EC,,所以,EG,,且,EG,AC,.,在,Rt,EBG,中,可得,BE,,故,DF,.,在,Rt,FDG,中,可得,FG,.,在直角梯形,BDFE,中,,从而,EG,2,FG,2,EF,2,,所以,EG,FG,.,又,AC,FG,G,,可得,EG,平面,AFC,.,因为,EG,平面,AEC,,所以平面,AEC,平面,AFC,.,18/101,(2),求直线,AE,与直线,CF,所成角余弦值,.,解答,19/101,如图,以,G,为坐标原点,分别以,,,方向为,x,轴,,y,轴正方向,,为单位长度,建立空间直角坐标系,G,xyz,,,由,(1),可得,A,(0,,,,,0),,,E,(1,0,,,),,,所以直线,AE,与直线,CF,所成角余弦值为,.,20/101,用向量法求异面直线所成角普通步骤,(1),选择三条两两垂直直线建立空间直角坐标系,.,(2),确定异面直线上两个点坐标,从而确定异面直线方向向量,.,(3),利用向量夹角公式求出向量夹角余弦值,.,(4),两异面直线所成角余弦值等于两向量夹角余弦值绝对值,.,思维升华,21/101,跟踪训练,1,如图,在正方体,ABCD,A,1,B,1,C,1,D,1,中,,M,、,N,分别是棱,CD,、,CC,1,中点,则异面直线,A,1,M,与,DN,所成角大小是,_.,答案,解析,90,连结,D,1,M,,在正方形,DCC,1,D,1,中,,M,、,N,分别是,CD,、,CC,1,中点,,DN,D,1,M,,又,A,1,D,1,平面,D,1,C,,,DN,平面,D,1,C,,,DN,A,1,D,1,,又,A,1,D,1,D,1,M,D,1,,,DN,平面,A,1,D,1,M,,又,A,1,M,平面,A,1,D,1,M,,,A,1,M,DN,.,即异面直线,A,1,M,与,DN,所成角为,90.,22/101,题型二求直线与平面所成角,例,2,(,全国丙卷,),如图,四棱锥,P-ABCD,中,,PA,底面,ABCD,,,AD,BC,,,AB,AD,AC,3,,,PA,BC,4,,,M,为线段,AD,上一点,,AM,2,MD,,,N,为,PC,中点,.,(1),证实,MN,平面,PAB,;,证实,23/101,由已知得,AM,AD,2.,取,BP,中点,T,,连结,AT,,,TN,,,由,N,为,PC,中点知,TN,BC,,,TN,BC,2.,又,AD,BC,,故,TN,綊,AM,,四边形,AMNT,为平行四边形,于是,MN,AT,.,因为,AT,平面,PAB,,,MN,平面,PAB,,,所以,MN,平面,PAB,.,24/101,(2),求直线,AN,与平面,PMN,所成角正弦值,.,解答,25/101,取,BC,中点,E,,连结,AE,.,从而,AE,AD,,,由,AB,AC,得,AE,BC,,,以,A,为坐标原点,,方向为,x,轴正方向,建立如图所表示空间直角坐标系,A,xyz,.,26/101,设,n,(,x,,,y,,,z,),为平面,PMN,法向量,则,可取,n,(0,2,1).,设,AN,与平面,PMN,所成角为,,则,sin,,,直线,AN,与平面,PMN,所成角正弦值为,.,27/101,利用向量法求线面角方法,(1),分别求出斜线和它在平面内射影直线方向向量,转化为求两个方向向量夹角,(,或其补角,),;,(2),经过平面法向量来求,即求出斜线方向向量与平面法向量所夹锐角,取其余角就是斜线和平面所成角,.,思维升华,28/101,跟踪训练,2,如图,在正方体,ABCD,A,1,B,1,C,1,D,1,中,点,O,为线段,BD,中点,.,设点,P,在线段,CC,1,上,直线,OP,与平面,A,1,BD,所成角为,,则,sin,取值范围是,_,答案,解析,29/101,由正方体性质易求得,sin,C,1,OA,1,,,sin,COA,1,,,注意到,C,1,OA,1,是锐角,,COA,1,是钝角,且,.,故,sin,取值范围是,,,1,30/101,题型三求二面角,例,3,(,天津,),如图,正方形,ABCD,中心为,O,,四边形,OBEF,为矩形,平面,OBEF,平面,ABCD,,点,G,为,AB,中点,,AB,BE,2.,(1),求证:,EG,平面,ADF,;,证实,几何画板展示,31/101,依题意,,OF,平面,ABCD,,,如图,以,O,为原点,分别以,方向为,x,轴,,y,轴,,z,轴正方向建立空间直角坐标系,依题意可得,O,(0,0,0),,,A,(,1,1,0),,,B,(,1,,,1,0),,,C,(1,,,1,0),,,D,(1,1,0),,,E,(,1,,,1,2),,,F,(0,0,2),,,G,(,1,0,0).,依题意,,(2,0,0),,,(1,,,1,2).,32/101,设,n,1,(,x,1,,,y,1,,,z,1,),为平面,ADF,法向量,,不妨取,z,1,1,,可得,n,1,(0,2,1),,,又,(0,1,,,2),,可得,n,1,0,,,又因为直线,EG,平面,ADF,,,所以,EG,平面,ADF,.,33/101,(2),求二面角,O,EF,C,正弦值;,解答,34/101,易证,(,1,1,0),为平面,OEF,一个法向量,,依题意,,(1,1,0),,,(,1,1,2).,设,n,2,(,x,2,,,y,2,,,z,2,),为平面,CEF,法向量,,不妨取,x,2,1,,可得,n,2,(1,,,1,1).,于是,sin,,,n,2,.,所以二面角,O,EF,C,正弦值为,.,35/101,(3),设,H,为线段,AF,上点,且,AH,HF,,求直线,BH,和平面,CEF,所成角正弦值,.,解答,36/101,由,AH,HF,,得,AH,AF,.,因为,(1,,,1,2),,,所以直线,BH,和平面,CEF,所成角正弦值为,.,37/101,利用向量法计算二面角大小惯用方法,(1),找法向量法:分别求出二面角两个半平面所在平面法向量,然后经过两个平面法向量夹角得到二面角大小,但要注意结合实际图形判断所求角大小,.,(2),找与棱垂直方向向量法:分别在二面角两个半平面内找到与棱垂直且以垂足为起点两个向量,则这两个向量夹角大小就是二面角大小,.,思维升华,38/101,跟踪训练,3,如图,(1),,正方形,ABCD,边长为,1,,,M,,,N,分别是边,AD,,,BC,上点,,MN,与,AB,平行,且与,AC,交于点,O,.,若将四边形,ABCD,沿,MN,折成直二面角,A,MN,C,(,如图,(2),,则二面角,C,AO,B,平面角正弦值,是,_,图,(1),图,(2),答案,解析,39/101,由条件得,NM,,,NB,,,NC,两两垂直,,分别以,NM,,,NB,,,NC,所在直线为,x,轴,,y,轴,,z,轴,,建立空间直角坐标系,,设,NC,m,,则,NO,m,,从而得,O,(,m,0,0),,,C,(0,0,,,m,),,,A,(1,1,m,0),设平面,AOC,法向量为,a,(,x,,,y,,,z,),,,40/101,得,取,x,1,,得,a,(1,,,1,1),又平面,AOB,一个法向量为,b,(0,0,1),,,故,sin,a,,,b,.,41/101,题型四求空间距离,(,供选取,),例,4,如图,,BCD,与,MCD,都是边长为,2,正三角形,平面,MCD,平面,BCD,,,AB,平面,BCD,,,AB,,求点,A,到平面,MBC,距离,.,解答,42/101,如图,取,CD,中点,O,,连结,OB,,,OM,,,因为,BCD,与,MCD,均为正三角形,,所以,OB,CD,,,OM,CD,,,又平面,MCD,平面,BCD,,所以,MO,平面,BCD,.,以,O,为坐标原点,直线,OC,,,BO,,,OM,分别为,x,轴,,y,轴,,z,轴,建立空间直角坐标系,O,xyz,.,因为,BCD,与,MCD,都是边长为,2,正三角形,,所以,OB,OM,,,则,O,(0,0,0),,,C,(1,0,0),,,M,(0,0,,,),,,B,(0,,,,,0),,,A,(0,,,,,),,,43/101,设平面,MBC,法向量为,n,(,x,,,y,,,z,),,,取,x,,可得平面,MBC,一个法向量为,n,(,,,1,1).,又,(0,0,2 ),,,所以所求距离为,d,.,44/101,求点面距普通有以下三种方法,(1),作点到面垂线,点到垂足距离即为点到平面距离;,(2),等体积法;,(3),向量法,.,其中向量法在易建立空间直角坐标系规则图形中较简便,.,思维升华,45/101,跟踪训练,4,(,四川成都外国语学校月考,),如图所表示,在四棱锥,P,ABCD,中,侧面,PAD,底面,ABCD,,侧棱,PA,PD,,,PA,PD,,底面,ABCD,为直角梯形,其中,BC,AD,,,AB,AD,,,AB,BC,1,,,O,为,AD,中点,.,(1),求直线,PB,与平面,POC,所成角余弦值;,解答,46/101,在,PAD,中,,PA,PD,,,O,为,AD,中点,,PO,AD,.,又,侧面,PAD,底面,ABCD,,,平面,PAD,平面,ABCD,AD,,,PO,平面,PAD,,,PO,平面,ABCD,.,在,PAD,中,,PA,PD,,,PA,PD,,,AD,2.,在直角梯形,ABCD,中,,O,为,AD,中点,,AB,AD,,,OC,AD,.,47/101,以,O,为坐标原点,,OC,为,x,轴,,OD,为,y,轴,,OP,为,z,轴建立空间直角坐标系,如图所表示,,则,P,(0,0,1),,,A,(0,,,1,0),,,B,(1,,,1,0),,,C,(1,0,0),,,D,(0,1,0),,,(1,,,1,,,1).,易证,OA,平面,POC,,,(0,,,1,0),为平面,POC,法向量,,PB,与平面,POC,所成角余弦值为,.,48/101,(2),求,B,点到平面,PCD,距离;,解答,(1,,,1,,,1),,,设平面,PCD,法向量为,u,(,x,,,y,,,z,),,,取,z,1,,得,u,(1,1,1).,则,B,点到平面,PCD,距离,d,.,49/101,(3),线段,PD,上是否存在一点,Q,,使得二面角,Q,AC,D,余弦值为,?若存在,求出,值;若不存在,请说明理由,.,解答,50/101,假设存在,且设,(0,1).,(0,,,,,1,),,,设平面,CAQ,法向量为,m,(,x,,,y,,,z,),,,Q,(0,,,,,1,).,取,z,1,,得,m,(1,,,1,,,1).,51/101,平面,CAD,一个法向量为,n,(0,0,1),,,二面角,Q,AC,D,余弦值为,,,|cos,m,,,n,|,.,整理化简,得,3,2,10,3,0.,解得,或,3(,舍去,),,,存在,且,.,52/101,典例,(16,分,),如图,在四棱锥,P,ABCD,中,,PA,底面,ABCD,,,AD,AB,,,AB,DC,,,AD,DC,AP,2,,,AB,1,,点,E,为棱,PC,中点,.,(1),证实:,BE,DC,;,(2),求直线,BE,与平面,PBD,所成角正弦值;,(3),若,F,为棱,PC,上一点,满足,BF,AC,,,求二面角,F,AB,P,余弦值,.,利用空间向量求解空间角,答题模板系列,6,规范解答,答题模板,53/101,(1),证实,依题意,以点,A,为原点建立空间直角坐标系如图,,可得,B,(1,0,0),,,C,(2,2,0),,,D,(0,2,0),,,P,(0,0,2).,2,分,由,E,为棱,PC,中点,得,E,(1,1,1).,(0,1,1),,,(2,0,0),,,故,0,,所以,BE,DC,.,4,分,54/101,(2),解,(,1,2,0),,,(1,0,,,2).,设,n,(,x,,,y,,,z,),为平面,PBD,一个法向量,,不妨令,y,1,,可得,n,(2,1,1).,6,分,所以直线,BE,与平面,PBD,所成角正弦值为,.,8,分,55/101,(3),解,(1,2,0),,,(,2,,,2,2),,,(2,2,0),,,(1,0,0).,由点,F,在棱,PC,上,设,,,0,1,,,由,BF,AC,,得,0,,,所以,,2(1,2,),2(2,2,),0,,解得,,,56/101,设,n,1,(,x,,,y,,,z,),为平面,FAB,一个法向量,,取平面,ABP,法向量,n,2,(0,1,0),,,则,cos,n,1,,,n,2,易知,二面角,F,AB,P,是锐角,,不妨令,z,1,,可得,n,1,(0,,,3,1).,所以其余弦值为,.,16,分,返回,57/101,利用向量求空间角步骤,第一步:建立空间直角坐标系;,第二步:确定点坐标;,第三步:求向量,(,直线方向向量、平面法向量,),坐标;,第四步:计算向量夹角,(,或函数值,),;,第五步:将向量夹角转化为所求空间角;,第六步:反思回顾,.,查看关键点、易错点和答题规范,.,返回,58/101,课时作业,59/101,1.(,苏北四市联考,),在长方体,ABCD,A,1,B,1,C,1,D,1,中,,AB,AA,1,2,,,AD,1,,,E,为,CC,1,中点,则异面直线,BC,1,与,AE,所成角余弦值为,_.,答案,解析,建立空间直角坐标系如图,,则,A,(1,0,0),,,E,(0,2,1),,,B,(1,2,0),,,C,1,(0,2,2).,所以,(,1,0,2),,,(,1,2,1).,所以异面直线,BC,1,与,AE,所成角余弦值为,.,1,2,3,4,5,6,7,8,9,10,11,12,13,60/101,2.(,徐州模拟,),二面角棱上有,A,,,B,两点,直线,AC,,,BD,分别在这个二面角两个半平面内,且都垂直于,AB,.,已知,AB,4,,,AC,6,,,BD,8,,,CD,,则该二面角大小为,_.,答案,解析,60,1,2,3,4,5,6,7,8,9,10,11,12,13,61/101,如图所表示,二面角大小就是,.,所以,24,,,60,,故二面角为,60.,1,2,3,4,5,6,7,8,9,10,11,12,13,62/101,3.,在正方体,ABCD,A,1,B,1,C,1,D,1,中,点,E,为,BB,1,中点,则平面,A,1,ED,与平面,ABCD,所成锐二面角余弦值为,_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,63/101,以,A,为原点建立如图所表示空间直角坐标系,A,xyz,,设棱长为,1,,,则,A,1,(0,0,1),,,E,(1,0,,,),,,D,(0,1,0),,,(0,1,,,1),,,(1,0,,,).,设平面,A,1,ED,一个法向量为,n,1,(1,,,y,,,z,),,,则有,平面,ABCD,一个法向量为,n,2,(0,0,1),,,n,1,(1,2,2).,cos,n,1,,,n,2,,,即所成锐二面角余弦值为,.,1,2,3,4,5,6,7,8,9,10,11,12,13,64/101,4.(,盐城模拟,),在三棱锥,P,ABC,中,,PA,平面,ABC,,,BAC,90,,,D,,,E,,,F,分别是棱,AB,,,BC,,,CP,中点,,AB,AC,1,,,PA,2,,则直线,PA,与平面,DEF,所成角正弦值为,_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,65/101,以,A,为原点,,AB,,,AC,,,AP,所在直线分别为,x,轴,,y,轴,,z,轴建立如图所表示空间直角坐标系,,由,AB,AC,1,,,PA,2,,,得,A,(0,0,0),,,B,(1,0,0),,,C,(0,1,0),,,P,(0,0,2),,,D,(,,,0,0),,,E,(,,,,,0),,,F,(0,,,,,1).,1,2,3,4,5,6,7,8,9,10,11,12,13,66/101,设平面,DEF,法向量为,n,(,x,,,y,,,z,),,,取,z,1,,则,n,(2,0,1),,,设直线,PA,与平面,DEF,所成角为,,,直线,PA,与平面,DEF,所成角正弦值为,.,1,2,3,4,5,6,7,8,9,10,11,12,13,67/101,5.,已知正四棱柱,ABCD,A,1,B,1,C,1,D,1,中,,AB,2,,,CC,1,,,E,为,CC,1,中点,则直线,AC,1,到平面,BDE,距离为,_.,答案,解析,1,1,2,3,4,5,6,7,8,9,10,11,12,13,68/101,以,D,为原点,,DA,,,DC,,,DD,1,所在直线分别为,x,轴,,y,轴,,z,轴建立空间直角坐标系,(,如图,),,,则,D,(0,0,0),,,A,(2,0,0),,,B,(2,2,0),,,C,(0,2,0),,,C,1,(0,2,),,,E,(0,2,,,),,易知,AC,1,平面,BDE,.,设,n,(,x,,,y,,,z,),是平面,BDE,法向量,,1,2,3,4,5,6,7,8,9,10,11,12,13,69/101,取,y,1,,则,n,(,1,1,,,),为平面,BDE,一个法向量,,又,(2,0,0),,,点,A,到平面,BDE,距离是,故直线,AC,1,到平面,BDE,距离为,1.,1,2,3,4,5,6,7,8,9,10,11,12,13,70/101,6.,如图所表示,三棱柱,ABC,A,1,B,1,C,1,侧棱长为,3,,底面边长,A,1,C,1,B,1,C,1,1,,且,A,1,C,1,B,1,90,,,D,点在棱,AA,1,上且,AD,2,DA,1,,,P,点在棱,C,1,C,上,则,最小值为,_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,71/101,建立如图所表示空间直角坐标系,则,D,(1,0,2),,,B,1,(0,1,3),,,设,P,(0,0,,,z,),,则,(1,0,2,z,),,,(0,1,3,z,),,,0,0,(2,z,)(3,z,),(,z,),2,,,故当,z,时,,取得最小值为,.,1,2,3,4,5,6,7,8,9,10,11,12,13,72/101,7.(,无锡模拟,),在长方体,ABCD,A,1,B,1,C,1,D,1,中,,AB,2,,,BC,AA,1,1,,,则直线,D,1,C,1,与平面,A,1,BC,1,所成角正弦值为,_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,73/101,如图,建立空间直角坐标系,D,xyz,,,则,D,1,(0,0,1),,,C,1,(0,2,1),,,A,1,(1,0,1),,,B,(1,2,0).,(0,2,0),,,(,1,2,0),,,(0,2,,,1),,,设平面,A,1,BC,1,一个法向量为,n,(,x,,,y,,,z,),,,1,2,3,4,5,6,7,8,9,10,11,12,13,74/101,令,y,1,,得,n,(2,1,2),,,设直线,D,1,C,1,与平面,A,1,BC,1,所成角为,,则,即直线,D,1,C,1,与平面,A,1,BC,1,所成角正弦值为,.,1,2,3,4,5,6,7,8,9,10,11,12,13,75/101,8.,在正四棱柱,ABCD,A,1,B,1,C,1,D,1,中,,AA,1,2,AB,,则直线,CD,与平面,BDC,1,所成角正弦值等于,_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,76/101,以,D,为坐标原点,建立空间直角坐标系,如图,,设,AA,1,2,AB,2,,则,D,(0,0,0),,,C,(0,1,0),,,B,(1,1,0),,,C,1,(0,1,2),,,则,(0,1,0),,,(1,1,0),,,(0,1,2).,设平面,BDC,1,法向量为,n,(,x,,,y,,,z,),,,令,y,2,,得平面,BDC,1,一个法向量为,n,(2,,,2,1).,设,CD,与平面,BDC,1,所成角为,,,则,n,,,n,,,所以有,1,2,3,4,5,6,7,8,9,10,11,12,13,77/101,9.(,连云港模拟,),已知点,E,,,F,分别在正方体,ABCD,A,1,B,1,C,1,D,1,棱,BB,1,,,CC,1,上,且,B,1,E,2,EB,,,CF,2,FC,1,,则平面,AEF,与平面,ABC,所成二面角,正切值为,_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,78/101,如图,建立空间直角坐标系,D,xyz,,,设,DA,1,,由已知条件得,A,(1,0,0),,,E,(1,1,,,),,,F,(0,1,,,),,,(0,1,,,),,,(,1,1,,,),,,设平面,AEF,法向量为,n,(,x,,,y,,,z,),,,平面,AEF,与平面,ABC,所成二面角为,,,由图知,为锐角,,1,2,3,4,5,6,7,8,9,10,11,12,13,79/101,令,y,1,,,z,3,,,x,1,,,则,n,(,1,1,,,3),,,取平面,ABC,法向量为,m,(0,0,,,1),,,则,cos,|cos,n,,,m,|,,,tan,.,1,2,3,4,5,6,7,8,9,10,11,12,13,80/101,10.(,南京、无锡联考,),如图,,在,三棱柱,ABC,A,1,B,1,C,1,中,,CA,CB,,,AB,AA,1,,,BAA,1,60.,(1),证实:,AB,A,1,C,;,证实,如图,取,AB,中点,O,,连结,OC,,,OA,1,,,A,1,B,.,CA,CB,,,OC,AB,.,AB,AA,1,,,BAA,1,60.,AA,1,B,为等边三角形,,OA,1,AB,.,OC,OA,1,O,,,AB,平面,OA,1,C,.,又,A,1,C,平面,OA,1,C,,,AB,A,1,C,.,1,2,3,4,5,6,7,8,9,10,11,12,13,81/101,(2),若平面,ABC,平面,AA,1,B,1,B,,,AB,CB,,求直线,A,1,C,与平面,BB,1,C,1,C,所成角正弦值,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,82/101,由,(1),知,,OC,AB,,,OA,1,AB,.,平面,ABC,平面,AA,1,B,1,B,,交线为,AB,,,OC,平面,AA,1,B,1,B,,,OA,,,OA,1,,,OC,两两垂直,.,以,O,为坐标原点,,方向为,x,轴正方向,,为单位长度,建立如图所表示空间直角坐标系,O,xyz,.,由题设知,A,(1,0,0),,,A,1,(0,,,,,0),,,C,(0,0,,,),,,B,(,1,0,0).,1,2,3,4,5,6,7,8,9,10,11,12,13,83/101,设,n,(,x,,,y,,,z,),是平面,BB,1,C,1,C,法向量,,可取,n,(,,,1,,,1).,直线,A,1,C,与平面,BB,1,C,1,C,所成角正弦值为,.,1,2,3,4,5,6,7,8,9,10,11,12,13,84/101,11.(,扬州模拟,),如图,在长方体,ABCD,A,1,B,1,C,1,D,1,中,,AA,1,AB,2,AD,2,,,E,为,AB,中点,,F,为,D,1,E,上一点,,D,1,F,2,FE,.,(1),证实:平面,DFC,平面,D,1,EC,;,证实,1,2,3,4,5,6,7,8,9,10,11,12,13,85/101,以,D,为原点,分别以,DA,,,DC,,,DD,1,所在直线为,x,轴,,y,轴,,z,轴,,建立如图所表示空间直角坐标系,D,xyz,,,则,A,(1,0,0),,,B,(1,2,0),,,C,(0,2,0),,,D,1,(0,0,2).,E,为,AB,中点,,点,E,坐标为,(1,1,0),,,D,1,F,2,FE,,,设,n,(,x,1,,,y,1,,,z,1,),是平面,DFC,法向量,,1,2,3,4,5,6,7,8,9,10,11,12,13,86/101,令,y,1,,则平面,D,1,EC,一个法向量为,p,(1,1,1),,,np,(1,0,,,1)(1,1,1),0,,,令,x,1,,则平面,DFC,一个法向量为,n,(1,0,,,1),,,设,p,(,x,2,,,y,2,,,z,2,),是平面,D,1,EC,法向量,,平面,DFC,平面,D,1,EC,.,1,2,3,4,5,6,7,8,9,10,11,12,13,87/101,(2),求二面角,A,DF,C,大小,.,证实,1,2,3,4,5,6,7,8,9,10,11,12,13,88/101,设,q,(,x,3,,,y,3,,,z,3,),是平面,ADF,法向量,,令,y,1,,则平面,ADF,一个法向量为,q,(0,1,,,1),,,设二面角,A,DF,C,平面角为,,,由题中条件可知,(,,,),,,二面角,A,DF,C,大小为,.,1,2,3,4,5,6,7,8,9,10,11,12,13,89/101,12.(,四川,),如图,在四棱锥,P-ABCD,中,,AD,BC,,,ADC,PAB,90,,,BC,CD,AD,.,E,为棱,AD,中点,异面直线,PA,与,CD,所成角为,90.,(1),在平面,PAB,内找一点,M,,使得直线,CM,平面,PBE,,并说明理由;,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,90/101,在梯形,ABCD,中,,AB,与,CD,不平行,.,延长,AB,,,DC,,相交于点,M,(,M,平面,PAB,),,,点,M,即为所求一个点,.,理由以下:,由已知,,BC,ED,且,BC,ED,.,所以四边形,BCDE,是平行四边形,,从而,CM,EB,.,又,EB,平面,PBE,,,CM,平面,PBE,,所以,CM,平面,PBE,.,(,说明:延长,AP,至点,N,,使得,AP,PN,,则所找点能够是直线,MN,上任意一点,),1,2,3,4,5,6,7,8,9,10,11,12,13,91/101,(2),若二面角,P-CD-A,大小为,45,,求直线,PA,与平面,PCE,所成角正弦值,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,92/101,由已知,,CD,PA,,,CD,AD,,,PA,AD,A,,,所以,CD,平面,PAD,.,于是,CD,PD,.,从而,PDA,是二面角,P-CD-A,平面角,.,所以,PDA,45.,由,PAB,90,,,且,PA,与,CD,所成角为,90,,,可得,PA,平面,ABCD,.,设,BC,1,,则在,Rt,PAD,中,,PA,AD,2.,1,2,3,4,5,6,7,8,9,10,11,12,13,93/101,作,Ay,AD,,以,A,为原点,以,方向分别为,x,轴,,z,轴正方向,建立如图所表示空间直角坐标系,A,xyz,,,则,A,(0,0,0),,,P,(0,0,2),,,C,(2,1,0),,,E,(1,0,0).,所以,(1,0,,,2),,,(1,1,0),,,(0,0,2).,设平面,PCE,法向量为,n,(,x,,,y,,,z,).,1,2,3,4,5,6,7,8,9,10,11,12,13,94/101,设,x,2,,解得,n,(2,,,2,1).,设直线,PA,与平面,PCE,所成角为,,,所以直线,PA,与平面,PCE,所成角正弦值为,.,1,2,3,4,5,6,7,8,9,10,11,12,13,95/101,*13.(,盐城模拟,),如图,边长为,正方形,ADEF,与梯形,ABCD,所在平面相互垂直,.,已知,AB,CD,,,AB,BC,,,DC,BC,AB,1,,点,M,在线段,EC,上,.,(1),证实:平面,BDM,平面,ADEF,;,证实,1,2,3,4,5,6,7,8,9,10,11,12,13,96/101,DC,BC,1,,,DC,BC,,,BD,,,又,AD,,,AB,2,,,AD,2,BD,2,AB,2,,,ADB,90,,,AD,BD,.,又平面,ADEF,平面,ABCD,,平面,ADEF,平面,ABCD,AD,,,BD,平面,ADEF,,,又,BD,平面,BDM,,,平面,BDM,平面,ADEF,.,1,2,3,4,5,6,7,8,9,10,11,12,13,97/101,(2),判断点,M,位置,使得平面,BDM,与平面,ABF,所成锐二面角为,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,98/101,在平面,DAB,内过点,D,作,DN,AB,,垂足为,N,,,AB,CD,,,DN,CD,,,又平面,ADEF,平面,ABCD,,,平面,ADEF,平面,ABCD,AD,,,DE,AD,,,ED,平面,ABCD,,,DN,ED,,,以,D,为坐标原点,,DN,所在直线为,x,轴,,DC,所在直线为,y,轴,,DE,所在直线为,z,轴,,建立空间直角坐标系如图所表示,.,1,2,3,4,5,6,7,8,9,10,11,12,13,99/101,B,(1,1,0),,,C,(0,1,0),,,E,(0,0,,,),,,N,(1,0,0),,,设,M,(,x,0,,,y,0,,,z,0,),,,(0,1),,,(,x,0,,,y,0,,,z,0,),(0,1,,,),,,x,0,0,,,y,0,,,z,0,(1,),,,M,(0,,,,,(1,).,设平面,BDM,法向量为,n,1,(,x,,,y,,,z,),,,又,(0,,,,,(1,),,,(1,1,0),,,1,2,3,4,5,6,7,8,9,10,11,12,13,100/101,令,x,1,,得,y,1,,,z,,,故,n,1,(1,,,1,,,),是平面,BDM,一个法向量,.,平面,ABF,一个法向量为,(1,0,0),,,点,M,在线段,CE,三等分点且靠近点,C,处,.,1,2,3,4,5,6,7,8,9,10,11,12,13,101/101,
展开阅读全文