资源描述
剖析题型 提炼方法,实验解读,构建知识网络 强化答题语句,探究高考 明确考向,*,*,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,第,3,讲数列综合问题,专题二数列,板块三专题突破关键考点,1/53,考情考向分析,1.,数列综合问题,往往将数列与函数、不等式结合,探求数列中最值或证实不等式,.,2.,以等差数列、等比数列为背景,利用函数观点探求参数值或范围,.,3.,将数列与实际应用问题相结合,考查数学建模和数学应用能力,.,2/53,热点分类突破,真题押题精练,内容索引,3/53,热点分类突破,4/53,1.,数列,a,n,中,,a,n,与,S,n,关系,热点一,利用,S,n,,,a,n,关系式求,a,n,2.,求数列通项惯用方法,(1),公式法:利用等差,(,比,),数列求通项公式,.,(2),在已知数列,a,n,中,满足,a,n,1,a,n,f,(,n,),,且,f,(1),f,(2),f,(,n,),可求,则可用累加法求数列通项,a,n,.,(3),在已知数列,a,n,中,满足,f,(,n,),,且,f,(1),f,(2),f,(,n,),可求,则可用累乘法求数列通项,a,n,.,(4),将递推关系进行变换,转化为常见数列,(,等差、等比数列,).,5/53,解答,例,1,已知等差数列,a,n,中,,a,2,2,,,a,3,a,5,8,,数列,b,n,中,,b,1,2,,其前,n,项和,S,n,满足:,b,n,1,S,n,2(,n,N,*,).,(1),求数列,a,n,,,b,n,通项公式;,6/53,解,a,2,2,,,a,3,a,5,8,,,2,d,2,3,d,8,,,d,1,,,a,n,n,(,n,N,*,).,b,n,1,S,n,2(,n,N,*,),,,b,n,S,n,1,2(,n,N,*,,,n,2).,由,,得,b,n,1,b,n,S,n,S,n,1,b,n,(,n,N,*,,,n,2),,,b,n,1,2,b,n,(,n,N,*,,,n,2).,b,1,2,,,b,2,2,b,1,,,b,n,是首项为,2,,公比为,2,等比数列,,b,n,2,n,(,n,N,*,).,7/53,解答,8/53,两式相减,得,9/53,给出,S,n,与,a,n,递推关系,求,a,n,,惯用思绪:一是利用,S,n,S,n,1,a,n,(,n,2),转化为,a,n,递推关系,再求其通项公式;二是转化为,S,n,递推关系,先求出,S,n,与,n,之间关系,再求,a,n,.,思维升华,10/53,解答,跟踪演练,1,(,绵阳诊疗性考试,),已知数列,a,n,前,n,项和,S,n,满足:,a,1,a,n,S,1,S,n,.,(1),求数列,a,n,通项公式;,11/53,解,由已知,a,1,a,n,S,1,S,n,,,当,n,2,时,由已知可得,a,1,a,n,1,S,1,S,n,1,,,得,a,1,(,a,n,a,n,1,),a,n,.,若,a,1,0,,则,a,n,0,,此时数列,a,n,通项公式为,a,n,0.,若,a,1,2,,则,2(,a,n,a,n,1,),a,n,,化简得,a,n,2,a,n,1,,,即此时数列,a,n,是以,2,为首项,,2,为公比等比数列,,故,a,n,2,n,(,n,N,*,).,总而言之,数列,a,n,通项公式为,a,n,0,或,a,n,2,n,.,12/53,解答,(2),若,a,n,0,,数列,前,n,项和为,T,n,,试问当,n,为何值时,,T,n,最小?,并求出最小值,.,解,因为,a,n,0,,故,a,n,2,n,.,由,n,5,0,,解得,n,5,,所以当,n,4,或,n,5,时,,T,n,最小,,13/53,热点二数列与函数、不等式综合问题,数列与函数综合问题普通是利用函数作为背景,给出数列所满足条件,通常利用点在曲线上给出,S,n,表示式,还有以曲线上切点为背景问题,处理这类问题关键在于利用数列与函数对应关系,将条件进行准确转化,.,数列与不等式综合问题普通以数列为载体,考查最值问题,不等关系或恒成立问题,.,14/53,解答,例,2,(,遵义联考,),已知函数,f,(,x,),ln(1,x,),.,(1),若,x,0,时,,f,(,x,),0,,求,最小值;,15/53,解,由已知可得,f,(0),0,,,若,0,,则当,x,0,时,,f,(,x,)0,,,f,(,x,),单调递增,,f,(,x,),f,(0),0,,不合题意;,16/53,则当,x,0,时,,f,(,x,)0).,(1),求,A,市,年碳排放总量,(,用含,m,式子表示,),;,28/53,解,设,年碳排放总量为,a,1,年碳排放总量为,a,2,,,,,由已知,,a,1,400,0.9,m,,,a,2,0.9,(400,0.9,m,),m,400,0.9,2,0.9,m,m,324,1.9,m,.,29/53,解答,(2),若,A,市永远不需要采取紧急限排办法,求,m,取值范围,.,30/53,解,a,3,0.9,(400,0.9,2,0.9,m,m,),m,400,0.9,3,0.9,2,m,0.9,m,m,,,,,a,n,400,0.9,n,0.9,n,1,m,0.9,n,2,m,0.9,m,m,(400,10,m,),0.9,n,10,m,.,由已知,n,N,*,,,a,n,550,,,(1),当,400,10,m,0,,即,m,40,时,显然满足题意;,(2),当,400,10,m,0,,即,m,40,时,,31/53,由指数函数性质可得,(400,10,m,),0.9,10,m,550,,解得,m,190.,综合得,m,40,;,(3),当,400,10,m,40,时,,由指数函数性质可得,10,m,550,,,解得,m,55,,综合得,40,m,55.,综上可得所求,m,范围是,(0,,,55.,32/53,常见数列应用题模型求解方法,(1),产值模型:原来产值基础数为,N,,平均增加率为,p,,对于时间,n,总产值,y,N,(1,p,),n,.,(2),银行储蓄复利公式:按复利计算利息一个储蓄,本金为,a,元,每期利率为,r,,存期为,n,,则本利和,y,a,(1,r,),n,.,(3),银行储蓄单利公式:利息按单利计算,本金为,a,元,每期利率为,r,,存期为,n,,则本利和,y,a,(1,nr,).,(4),分期付款模型:,a,为贷款总额,,r,为年利率,,b,为等额还款数,则,b,.,思维升华,33/53,跟踪演练,3,(,上海崇明区模拟,),年崇明区政府投资,8,千万元开启休闲体育新乡村旅游项目,.,规划从,年起,在今后若干年内,每年继续投资,2,千万元用于此项目,.,年该项目标净收入为,5,百万元,并预测在相当长年份里,每年净收入均在上一年基础上增加,50%.,记,年为第,1,年,,f,(,n,),为第,1,年至今后第,n,(,n,N,*,),年累计利润,(,注:含第,n,年,累计利润累计净收入累计投入,单位:千万元,),,且当,f,(,n,),为正值时,认为该项目赢利,.,34/53,解答,(1),试求,f,(,n,),表示式;,35/53,解,由题意知,第,1,年至今后第,n,(,n,N,*,),年累计投入为,8,2(,n,1),2,n,6(,千万元,),,,第,1,年至今后第,n,(,n,N,*,),年累计净收入为,36/53,解答,(2),依据预测,该项目将从哪一年开始并连续赢利?请说明理由,.,37/53,当,n,3,时,,f,(,n,1),f,(,n,)0,,,故当,n,4,时,,f,(,n,),递增,.,38/53,该项目将从第,8,年开始并连续赢利,.,答:,该项目将从,2023,年开始并连续赢利,.,x,4.,39/53,从而当,x,1,4),时,,f,(,x,)0,,,f,(,x,),单调递增,.,该项目将从第,8,年开始并连续赢利,.,答:,该项目将从,2023,年开始并连续赢利,.,40/53,真题押题精练,41/53,1.(,全国,),记,S,n,为数列,a,n,前,n,项和,.,若,S,n,2,a,n,1,,则,S,6,_.,真题体验,解析,63,答案,42/53,解析,S,n,2,a,n,1,,当,n,2,时,,S,n,1,2,a,n,1,1,,,a,n,S,n,S,n,1,2,a,n,2,a,n,1,(,n,2),,,即,a,n,2,a,n,1,(,n,2).,当,n,1,时,,a,1,S,1,2,a,1,1,,得,a,1,1.,数列,a,n,是首项,a,1,1,,公比,q,2,等比数列,,S,6,1,2,6,63.,43/53,2.(,山东,),已知,x,n,是各项均为正数等比数列,且,x,1,x,2,3,,,x,3,x,2,2.,(1),求数列,x,n,通项公式;,解答,44/53,解,设数列,x,n,公比为,q,.,所以,3,q,2,5,q,2,0,,,由已知得,q,0,,,所以,q,2,,,x,1,1.,所以数列,x,n,通项公式为,x,n,2,n,1,(,n,N,*,).,45/53,(2),如图,在平面直角坐标系,xOy,中,依次连接点,P,1,(,x,1,,,1),,,P,2,(,x,2,,,2),,,,,P,n,1,(,x,n,1,,,n,1),得到折线,P,1,P,2,P,n,1,,求由该折线与直线,y,0,,,x,x,1,,,x,x,n,1,所围成区域面积,T,n,.,解答,46/53,解,过,P,1,,,P,2,,,,,P,n,1,向,x,轴作垂线,垂足分别为,Q,1,,,Q,2,,,,,Q,n,1,.,由,(1),得,x,n,1,x,n,2,n,2,n,1,2,n,1,,,记梯形,P,n,P,n,1,Q,n,1,Q,n,面积为,b,n,,,所以,T,n,b,1,b,2,b,n,3,2,1,5,2,0,7,2,1,(2,n,1),2,n,3,(2,n,1),2,n,2,.,又,2,T,n,3,2,0,5,2,1,7,2,2,(2,n,1),2,n,2,(2,n,1),2,n,1,,,47/53,得,T,n,3,2,1,(2,2,2,2,n,1,),(2,n,1),2,n,1,48/53,押题预测,已知数列,a,n,前,n,项和,S,n,满足关系式,S,n,ka,n,1,,,k,为不等于,0,常数,.,(1),试判断数列,a,n,是否为等比数列;,押题依据,本题综合考查数列知识,考查反证法数学方法及逻辑推理能力,.,解答,押题依据,解,若数列,a,n,是等比数列,则由,n,1,得,a,1,S,1,ka,2,,从而,a,2,ka,3,.,又取,n,2,,得,a,1,a,2,S,2,ka,3,,,于是,a,1,0,,显然矛盾,故数列,a,n,不是等比数列,.,49/53,押题依据,是高考热点问题,即数列与不等式完美结合,其中将求数列前,n,项和惯用方法,“,裂项相消法,”,与,“,错位相减法,”,结合在一起,考查了综合分析问题、处理问题能力,.,解答,押题依据,50/53,从而,S,n,a,n,1,.,当,n,2,时,由,S,n,1,a,n,,得,a,n,S,n,S,n,1,a,n,1,a,n,,,从而其前,n,项和,S,n,2,n,2,(,n,N,*,).,由,得,b,n,n,2,,,51/53,记,C,2,12,1,22,0,n,2,n,2,,,则,2,C,2,12,0,22,1,n,2,n,1,,,52/53,即,n,2,n,900,,因为,n,N,*,且,n,1,,故,n,9,,,从而最小正整数,n,值是,10.,53/53,
展开阅读全文