收藏 分销(赏)

3.MBAMPA管理类联考数学部分知识点归纳(几何).doc

上传人:精**** 文档编号:1242497 上传时间:2024-04-19 格式:DOC 页数:8 大小:256.51KB
下载 相关 举报
3.MBAMPA管理类联考数学部分知识点归纳(几何).doc_第1页
第1页 / 共8页
3.MBAMPA管理类联考数学部分知识点归纳(几何).doc_第2页
第2页 / 共8页
3.MBAMPA管理类联考数学部分知识点归纳(几何).doc_第3页
第3页 / 共8页
3.MBAMPA管理类联考数学部分知识点归纳(几何).doc_第4页
第4页 / 共8页
3.MBAMPA管理类联考数学部分知识点归纳(几何).doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、管理类联考数学部分知识点归纳(三)几何两直线平行,同位角相等,内错角相等,同旁内角互补。 1.平面图形(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。内角和定理:三角形三个内角和等于180。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。面积:。其中h是a边上的高,C是a、b边所夹的角,p为三角形的半周长。勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即。常用勾股数:(3,4,5); (5,12,13

2、); (7,24,25); (8,15,17)。直角三角形斜边上的中线等于斜边上的一半。直角三角形中,30角所对的直角边等于斜边的一半。三角形的重心坐标公式 :ABC三个顶点的坐标分别为、,则ABC的重心的坐标是。摄影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项:中位线定理:三角形的中位线平行于第三边,并且等于它的一半。结论:三条中位线组成一个三角形,其周长为原三角形周长的一半。三条中位线将原三角形分割成四个全等的三角形。三条中位线将原三角形划分出三个面积相等的平行四边形。三角形一条中线和与它相交的中位线互相平分。三角形中

3、任意两条中位线的夹角与这夹角所对的三角形的顶角相等。 内心:内切圆圆心,三条角平分线交点。外心:外接圆圆心,三条边的垂直平分线交点。重心:三条中线的交点。垂心:三条高线的交点。全等三角形:对应边、对应角相等,对应角平分线、中线、高相等,面积相等。边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)推论:有两角和其中一角的对边对应相等的两个三角形全等(AAS)。边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)HL定理:有斜边和一条直角边对应相等的

4、两个直角三角形全等(可简写成“斜边、直角边”或“HL”)相似三角形:对应角相等,对应边成比例。对应高的比、对应中线的比与对应角平分线的比都等于相似比周长的比等于相似比面积的比等于相似比的平方。(2)四角形内角和定理:四边形的内角和等于360。推论:n边形的内角和等于180。外角和定理:四边形的外角和等于360。推论:任意多边形的外角和等于360多边形对角线条数计算公式:(n为边数)平面四边形:邻角互补,对角相等;对边平行且相等;对角线互相平分;若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。面积:;周长:。矩形:具

5、有平行四边形的一切性质;四个角都是直角;对角线相等;轴对称图形。面积:;周长:;对角线。梯形:一组对边平行而另一组对边不平行的四边形。梯形中位线平行于两底,并且等于两底和的一半。面积: (3)圆与扇形圆:在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。以点O为圆心的圆记作“O”,读作“圆O”周长:;面积:。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径垂直平分弦,

6、并且平分弦所对的另一条弧。推论2:圆的两条平行弦所夹的弧相等。在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推论2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。切线:经过半径的外端并且垂直于这条半径的直线。从圆外一点引圆的两条

7、切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。相交弦定理:O中,弦AB与弦CD相交与点E,则AEBE=CEDE。弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。即:BAC=ADC。切割线定理:PA为O切线,PBC为O割线,则。弧度:圆弧长度和半径的比值。1弧度,弧度扇形弧长公式: ;扇形面积公式:。其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。2.空间几何体(1)长方体设三条棱长分别为a、b、c则长方体表面积为;长方体体积为长方体体对角线为(2)柱体设圆柱的高为h,底面半径为r则圆柱体的侧面积为则圆柱体的全面积为则圆柱体的体积为(3)球体设球的半径为R,则球的体积

8、为球的表面积为3.平面解析几何(1)平面直角坐标系点:点A坐标为(x1,y1),点B坐标为(x2,y2),则AB间的距离,即线段AB的长度为。 线段的定比分点坐标:设,是线段的分点,是实数,且,则。斜率:(、).点到直线的距离: (点,直线:).(2)直线方程与圆的方程直线方程:点斜式 (直线过点,且斜率为);斜截式 (b为直线在y轴上的截距);两点式 ()(、 ().截距式 (分别为直线的横、纵截距,)一般式 (其中A、B不同时为0).两条直线的平行和垂直:若,;。若,且A1、A2、B1、B2都不为零。;夹角(到角)公式:;(,,)两平行直线距离公式:若,则距离。圆的方程:标准式: 。一般式: (0) ,即圆心,半径直线与圆的位置关系:直线与圆位置关系;。其中。两圆位置关系:设两圆圆心分别为O1,O2,半径分别为r1,r2,;.8

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服