资源描述
2025年高考江苏数学试题及答案
一、单项选择题(总共10题,每题2分)
1. 已知集合\(A = \{x|x^2 - 3x + 2 = 0\}\),\(B = \{x|x^2 - ax + a - 1 = 0\}\),若\(A\cap B = B\),则实数\(a\)的值为( )
A. 2 B. 3 C. 2或3 D. 1或2或3
2. 函数\(y = \log_2(x^2 - 4x + 3)\)的单调递增区间是( )
A. \((3, +\infty)\) B. \((2, +\infty)\) C. \((-\infty, 2)\) D. \((-\infty, 1)\)
3. 已知\(\sin\alpha = \frac{3}{5}\),\(\alpha\in(\frac{\pi}{2}, \pi)\),则\(\tan(\alpha + \frac{\pi}{4})\)的值为( )
A. \(\frac{1}{7}\) B. 7 C. \(-\frac{1}{7}\) D. -7
4. 若直线\(y = kx + 1\)与圆\(x^2 + y^2 = 1\)相交于\(P\),\(Q\)两点,且\(\angle POQ = 120^{\circ}\)(其中\(O\)为坐标原点),则\(k\)的值为( )
A. \(\pm\sqrt{3}\) B. \(\pm\frac{\sqrt{3}}{3}\) C. \(\pm1\) D. 不存在
5. 已知\(a = \log_23\),\(b = \log_34\),\(c = \log_45\),则( )
A. \(a > b > c\) B. \(a < b < c\) C. \(a = b = c\) D. \(a > c > b\)
6. 已知等差数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),若\(a_2 = 1\),\(a_5 = 3\),则\(S_6\)等于( )
A. 12 B. 15 C. 18 D. 21
7. 已知函数\(f(x)\)是定义在\(R\)上的奇函数,当\(x > 0\)时,\(f(x) = 2^x - 1\),则当\(x < 0\)时,\(f(x)\)的表达式为( )
A. \(-2^{-x} - 1\) B. \(-2^{-x} + 1\) C. \(2^{-x} - 1\) D. \(2^{-x} + 1\)
8. 已知椭圆\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)\)的离心率为\(\frac{\sqrt{3}}{2}\),则双曲线\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)的离心率为( )
A. \(\frac{5}{4}\) B. \(\frac{\sqrt{5}}{2}\) C. \(\frac{3}{2}\) D. \(\frac{\sqrt{7}}{2}\)
9. 已知函数\(y = f(x)\)的图象如图所示,则函数\(y = f(x)\)的解析式可能是( )
A. \(f(x) = \frac{x^2 - 1}{x}\) B. \(f(x) = \frac{x^2 + 1}{x}\) C. \(f(x) = \frac{1 - x^2}{x}\) D. \(f(x) = \frac{x^2}{x - 1}\)
10. 已知\(a\),\(b\),\(c\)分别为\(\triangle ABC\)内角\(A\),\(B\),\(C\)的对边,\(\sin^2B = 2\sin A\sin C\),且\(a = b\),则\(\cos B\)的值为( )
A. \(\frac{1}{4}\) B. \(\frac{1}{3}\) C. \(\frac{1}{2}\) D.\(\frac{3}{4}\)
二、多项选择题(总共10题,每题2分)
1. 下列函数中,既是偶函数又在\((0, +\infty)\)上单调递增的是( )
A. \(y = x^3\) B. \(y = |x| + 1\) C. \(y = -x^2 + 1\) D. \(y = 2^{|x|}\)
2. 已知向量\(\vec{a} = (1, 2)\),\(\vec{b} = (2, -1)\),则( )
A. \(\vec{a}\perp\vec{b}\) B. \(|\vec{a}| = \sqrt{5}\) C. \(\vec{a}\parallel\vec{b}\) D. \(\vec{a}\cdot\vec{b} = \vec{b}\cdot\vec{a}\)
3. 已知\(m\),\(n\)是两条不同的直线,\(\alpha\),\(\beta\)是两个不同的平面,则下列命题正确的是( )
A. 若\(m\parallel\alpha\),\(n\parallel\alpha\),则\(m\parallel n\) B. 若\(m\perp\alpha\),\(n\perp\alpha\),则\(m\parallel n\)
C. 若\(m\parallel\alpha\),\(m\perp\beta\),则\(\alpha\perp\beta\) D. 若\(\alpha\perp\beta\),\(m\subset\alpha\),\(n\subset\beta\),则\(m\perp n\)
4. 已知函数\(f(x) = \sin(\omega x + \varphi)(\omega > 0, 0 < \varphi < \frac{\pi}{2})\)的图象如图所示,则( )
A. \(\omega = 2\) B. \(\varphi = \frac{\pi}{3}\) C. \(f(x)\)的最小正周期为\(\pi\) D. \(f(x)\)在\([0, \frac{\pi}{2}]\)上单调递增
5. 已知数列\(\{a_n\}\)满足\(a_{n + 1} = \frac{1}{1 - a_n}\),若\(a_1 = \frac{1}{2}\),则\(a_{2025}\)的值为( )
A. \(\frac{1}{2}\) B. 2 C. -1 D. 1
6. 已知\(x\),\(y\)满足约束条件\(\begin{cases}x + y\geq 2\\x - y\leq 2\\y\leq 2\end{cases}\),则\(z = 3x - y\)的最大值为( )
A. 2 B. 4 C. 6 D. 8
7. 已知双曲线\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)\)的一条渐近线方程为\(y = \frac{4}{3}x\),则该双曲线的离心率为( )
A. \(\frac{}{3}\) B. \(\frac{5}{3}\) C. \(\frac{4}{3}\) D. \(\frac{5}{4}\)
8. 已知函数\(f(x) = x^3 - 3x^2 + 2\),则( )
A. \(f(x)\)的极大值为2 B. \(f(x)\)的极小值为 -2
C. \(f(x)\)的单调递增区间为\((-\infty, 0)\)和\((2, +\infty)\) D. \(f(x)\)的单调递减区间为\((0, 2)\)
9. 已知\(a\),\(b\),\(c\)为正实数,且\(a + b + c = 1\),则( )
A. \(a^2 + b^2 + c^2\geq\frac{1}{3}\) B. \(ab + bc + ca\leq\frac{1}{3}\)
C. \(\sqrt{a} + \sqrt{b} + \sqrt{c}\leq\sqrt{3}\) D. \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\geq9\)
10. 已知函数\(f(x) = \ln x - ax + 1\),若\(f(x)\leq 0\)恒成立,则实数\(a\)的取值范围是( )
A. \([1, +\infty)\) B. \((0, 1]\) C. \((-\infty, 1]\) D. \((-\infty, 0]\)
三、填空题(总共4题,每题5分)
1. 已知函数\(f(x) = \frac{1}{x - 1}\),则\(f(f(2))\)的值为______。
2. 已知等比数列\(\{a_n\}\)中,\(a_1 = 2\),\(a_4 = 16\),则其前\(n\)项和\(S_n\) =______。
3. 已知抛物线\(y^2 = 4x\)的焦点为\(F\),点\(A\)在抛物线上,且\(|AF| = 3\),则点\(A\)的横坐标为______。
4. 已知函数\(f(x) = \sin(2x + \frac{\pi}{3})\),将其图象向右平移\(\frac{\pi}{6}\)个单位长度后得到函数\(g(x)\)的图象,则\(g(x)\)的表达式为______。
四、判断题(总共10题,每题2分)
1. 若函数\(f(x)\)在区间\((a, b)\)上单调递增,则\(f^\prime(x)>0\)在\((a, b)\)上恒成立。( )
2. 向量\(\vec{a}\cdot\vec{b}=0\),则\(\vec{a}=0\)或\(\vec{b}=0\)。( )
3. 若\(a>b\),则\(a^2>b^2\)。( )
4. 在\(\triangle ABC\)中,若\(\sin A>\sin B\),则\(A>B\)。( )
5. 函数\(y = \log_a x\)(\(a>0\)且\(a\neq1\))在\((0, +\infty)\)上是单调函数。( )
6. 若直线\(l_1\)与\(l_2\)的斜率相等,则\(l_1\parallel l_2\)。( )
7. 椭圆\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)(\(a>b>0\))的离心率\(e\)越大,椭圆越圆。( )
8. 若数列\(\{a_n\}\)是等差数列,则其前\(n\)项和\(S_n\)一定是关于\(n\)的二次函数。( )
9. 函数\(y = \sin x\)的图象关于点\((\frac{\pi}{2},0)\)对称。( )
10. 若\(f(x)\)是奇函数,则\(f(0)=0\)。( )
五、简答题(总共4题,每题5分)
1. 已知集合\(A = \{x|x^2 - 3x - 4 < 0\}\),\(B = \{x|\frac{1}{x - 1}>0\}\),求\(A\cap B\)。
2. 已知函数\(f(x) = 2\sin(2x - \frac{\pi}{6}) + 1\),求其最小正周期和单调递增区间。
3. 在等差数列\(\{a_n\}\)中,已知\(a_3 = 5\),\(a_7 = 13\),求数列的通项公式\(a_n\)和前\(n\)项和\(S_n\)。
4. 已知椭圆\(C\):\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)\)的离心率为\(\frac{\sqrt{
展开阅读全文