资源描述
2025年上海市二中学高三数学第一学期期末教学质量检测试题
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在正项等比数列{an}中,a5-a1=15,a4-a2 =6,则a3=( )
A.2 B.4 C. D.8
2.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为( )
A. B. C. D.
3.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:
①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;
②可以估计不足的大学生使用主要玩游戏;
③可以估计使用主要找人聊天的大学生超过总数的.
其中正确的个数为( )
A. B. C. D.
4.已知x,y满足不等式组,则点所在区域的面积是( )
A.1 B.2 C. D.
5.“是函数在区间内单调递增”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
6.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( )
A. B.
C. D.
7.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为( )
A. B. C. D.
8.已知复数满足,则( )
A. B. C. D.
9.已知的内角的对边分别是且,若为最大边,则的取值范围是( )
A. B. C. D.
10.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:
若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( )
A.324 B.522 C.535 D.578
11.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为( )
A. B. C. D.
12.已知点(m,8)在幂函数的图象上,设,则( )
A.b<a<c B.a<b<c C.b<c<a D.a<c<b
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线在点处的切线方程为________.
14.已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为__________.
15.(5分)函数的定义域是____________.
16.如图,在体积为V的圆柱中,以线段上的点O为项点,上下底面为底面的两个圆锥的体积分别为,,则的值是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数()
(1)函数在点处的切线方程为,求函数的极值;
(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.
18.(12分)已知等差数列的前n项和为,且,.
求数列的通项公式;
求数列的前n项和.
19.(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点
(1)求椭圆的方程;
(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.
20.(12分)已知多面体中,、均垂直于平面,,,,是的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
21.(12分)设抛物线过点.
(1)求抛物线C的方程;
(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.
22.(10分)如图,四棱锥中,四边形是矩形,,,为正三角形,且平面平面,、分别为、的中点.
(1)证明:平面;
(2)求几何体的体积.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
根据题意得到,,解得答案.
【详解】
,,解得或(舍去).
故.
故选:.
本题考查了等比数列的计算,意在考查学生的计算能力.
2.A
【解析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.
【详解】
结合题意,绘制图像
要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.
本道题考查了抛物线的基本性质,难度中等.
3.C
【解析】
根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.
【详解】
使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;
使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;
使用主要找人聊天的大学生人数为,因为,所以③正确.
故选:C.
本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.
4.C
【解析】
画出不等式表示的平面区域,计算面积即可.
【详解】
不等式表示的平面区域如图:
直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.
故选:C.
本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.
5.C
【解析】
,令解得
当,的图像如下图
当,的图像如下图
由上两图可知,是充要条件
【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.
6.D
【解析】
根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.
【详解】
因为是定义在上的增函数,故.
又有意义,故,故,所以.
令,则,
故在上为增函数,所以即,
整理得到.
故选:D.
本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.
7.B
【解析】
由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.
【详解】
由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,
由于,,∴,∴,,
∴点坐标为,代入抛物线方程得,,
∴,.
故选:B.
本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.
8.A
【解析】
由复数的运算法则计算.
【详解】
因为,所以
故选:A.
本题考查复数的运算.属于简单题.
9.C
【解析】
由,化简得到的值,根据余弦定理和基本不等式,即可求解.
【详解】
由,可得,
可得,
通分得,
整理得,所以,
因为为三角形的最大角,所以,
又由余弦定理
,当且仅当时,等号成立,
所以,即,
又由,所以的取值范围是.
故选:C.
本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.
10.D
【解析】
因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.
【详解】
从第6行第6列开始向右读取数据,编号内的数据依次为:
,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.
本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.
11.A
【解析】
先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.
【详解】
设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.
故选:A
本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.
12.B
【解析】
先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)=x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.
【详解】
由幂函数的定义可知,m﹣1=1,∴m=2,
∴点(2,8)在幂函数f(x)=xn上,
∴2n=8,∴n=3,
∴幂函数解析式为f(x)=x3,在R上单调递增,
∵,1<lnπ<3,n=3,
∴,
∴a<b<c,
故选:B.
本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
求导,得到和,利用点斜式即可求得结果.
【详解】
由于,,所以,
由点斜式可得切线方程为.
故答案为:.
本题考查利用导数的几何意义求切线方程,属基础题.
14.
【解析】
由点,关于直线对称,得到直线的斜率,再根据直线过点,可求出直线方程,又,中点在直线上,代入直线的方程,化简整理,即可求出结果.
【详解】
因为为双曲线:的左焦点,所以,又点,关于直线对称,,所以可得直线的方程为,又,中点在直线上,所以,整理得,又,所以,
故,解得,因为,所以.
故答案为
本题主要考查双曲线的简单性质,先由两点对称,求出直线斜率,再由焦点坐标求出直线方程,根据中点在直线上,即可求出结果,属于常考题型.
15.
【解析】
要使函数有意义,则,即,解得,故函数的定义域是.
16.
【解析】
根据圆柱的体积为,以及圆锥的体积公式,计算即得.
【详解】
由题得,,得.
故答案为:
本题主要考查圆锥体的体积,是基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)极小值为,极大值为.(2)
【解析】
(1)根据斜线的斜率即可求得参数,再对函数求导,即可求得函数的极值;
(2)根据题意,对目标式进行变形,构造函数,根据是单调减函数,分离参数,求函数的最值即可求得结果.
【详解】
(1)函数的定义域为,
,,,
可知,,
解得,,
可知在,时,,函数单调递增,
在时,,函数单调递减,
可知函数的极小值为,
极大值为.
(2)可以变形为,
可得,
可知函数在上单调递减
,
,
可得,
设,
,
可知函数在单调递减,
,
可知,
可知参数的取值范围为.
本题考查由切线的斜率求参数的值,以及对具体函数极值的求解,涉及构造函数法,以及利用导数求函数的值域;第二问的难点在于对目标式的变形,属综合性中档题.
18.(1);(2).
【解析】
先设出数列的公差为d,结合题中条件,求出首项和公差,即可得出结果.
利用裂项相消法求出数列的和.
【详解】
解:设公差为d的等差数列的前n项和为,
且,.
则有:,
解得:,,
所以:
由于:,
所以:,
则:,
则:,
.
本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.
19.(1)(2)或
【解析】
(1)由已知条件得到方程组,解得即可;
(2)由题意得直线的斜率存在,设直线方程为,联立直线与椭圆方程,消元、列出韦达定理,由得到的范围,设弦中点坐标为则,所以在轴上方,只需位于内(含边界)就可以,即满足,得到不等式组,解得即可;
【详解】
解:(1)由已知椭圆右焦点坐标为,离心率为,,,
所以椭圆的标准方程为;
(2)由题意得直线的斜率存在,设直线方程为
联立,消元整理得,,
由,解得
设弦中点坐标为,
所以在轴上方,只需位于内(含边界)就可以,
即满足,即,
解得或
本题考查了椭圆的定义标准方程及其性质,直线与椭圆的综合应用,考查了推理能力与计算能力,属于中档题.
20.(1)见解析;(2).
【解析】
(1)取的中点,连接、,推导出四边形为平行四边形,可得出,由此能证明平面;
(2)由,得平面,则点到平面的距离等于点到平面的距离,在平面内过点作于点,就是到平面的距离,也就是点到平面的距离,由此能求出直线与平面所成角的正弦值.
【详解】
(1)取的中点,连接、,
、分别为、的中点,则且,
、均垂直于平面,且,则,且,
所以,四边形为平行四边形,则,
平面,平面,因此,平面;
(2)由,平面,平面,平面,
点到平面的距离等于点到平面的距离,
在平面内过点作于点,
平面,平面,,
,,平面,
即就是到平面的距离,也就是点到平面的距离,
设,
则到平面的距离,,
因此,直线与平面所成角的正弦值为.
本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.
21.(1)(2)
【解析】
(1)代入计算即可.
(2) 设直线AB的方程为,再联立直线与抛物线的方程,消去可得的一元二次方程,再根据韦达定理与求解,进而利用弦长公式求解即可.
【详解】
解:
(1)因为抛物线过点,所以,所以,抛物线的方程为
(2)由题意知直线AB的斜率存在,可设直线AB的方程为,,.因为,所以,联立,化简得,所以,,所以,,解得,所以.
本题考查抛物线的方程以及联立直线与抛物线求弦长的简单应用.属于基础题.
22.(1)见解析;(2)
【解析】
(1)由题可知,根据三角形的中位线的性质,得出,根据矩形的性质得出,所以,再利用线面平行的判定定理即可证出平面;
(2)由于平面平面,根据面面垂直的性质,得出平面,从而得出到平面的距离为,结合棱锥的体积公式,即可求得结果.
【详解】
解:(1)∵,分别为,的中点,
∴,
∵四边形是矩形,∴,∴,
∵平面,平面,
∴平面.
(2)取,的中点,,连接,,,,则,
由于为三棱柱,为四棱锥,
∵平面平面,∴平面,
由已知可求得,
∴到平面的距离为,
因为四边形是矩形,,,
,
设几何体的体积为,
则,
∴,
即:.
本题考查线面平行的判定、面面垂直的性质和棱锥的体积公式,考查逻辑推理和计算能力.
展开阅读全文