资源描述
2025-2026学年安徽省安庆市数学高三第一学期期末预测试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )
A. B. C. D.
2.设,则,则( )
A. B. C. D.
3.已知正方体的棱长为2,点为棱的中点,则平面截该正方体的内切球所得截面面积为( )
A. B. C. D.
4.在中,为边上的中线,为的中点,且,,则( )
A. B. C. D.
5.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )
A. B. C. D.
6.为虚数单位,则的虚部为( )
A. B. C. D.
7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( )
A.12种 B.24种 C.36种 D.48种
8.已知,满足,且的最大值是最小值的4倍,则的值是( )
A.4 B. C. D.
9. 若x,y满足约束条件的取值范围是
A.[0,6] B.[0,4] C.[6, D.[4,
10.已知全集为,集合,则( )
A. B. C. D.
11.如图,四面体中,面和面都是等腰直角三角形,,,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为( )
A. B. C. D.
12.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:
141 432 341 342 234 142 243 331 112 322
342 241 244 431 233 214 344 142 134 412
由此可以估计,恰好第三次就停止摸球的概率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,则=___________,_____________________________
14.三个小朋友之间送礼物,约定每人送出一份礼物给另外两人中的一人(送给两个人的可能性相同),则三人都收到礼物的概率为______.
15.已知集合,,则__________.
16.在等比数列中,,则________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在三棱锥中,,是的中点,点在上,平面,平面平面,为锐角三角形,求证:
(1)是的中点;
(2)平面平面.
18.(12分)已知椭圆:的长半轴长为,点(为椭圆的离心率)在椭圆上.
(1)求椭圆的标准方程;
(2)如图,为直线上任一点,过点椭圆上点处的切线为,,切点分别,,直线与直线,分别交于,两点,点,的纵坐标分别为,,求的值.
19.(12分)如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.
(1)证明:AP∥平面EBD;
(2)证明:BE⊥PC.
20.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与曲线交于、两点,求的面积.
21.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.
(1)证明:平面;
(2)求点N到平面CDM的距离.
22.(10分)设函数.
(1)若恒成立,求整数的最大值;
(2)求证:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
令圆的半径为1,则,故选C.
2.A
【解析】
根据换底公式可得,再化简,比较的大小,即得答案.
【详解】
,
,
.
,显然.
,即,
,即.
综上,.
故选:.
本题考查换底公式和对数的运算,属于中档题.
3.A
【解析】
根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面的距离,由此求解出截面圆的半径,从而截面面积可求.
【详解】
如图所示:
设内切球球心为,到平面的距离为,截面圆的半径为,
因为内切球的半径等于正方体棱长的一半,所以球的半径为,
又因为,所以,
又因为,
所以,所以,
所以截面圆的半径,所以截面圆的面积为.
故选:A.
本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算.
4.A
【解析】
根据向量的线性运算可得,利用及,计算即可.
【详解】
因为,
所以
,
所以,
故选:A
本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.
5.D
【解析】
由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.
【详解】
由题,得,
因为的图象与直线的两个相邻交点的距离等于,
所以函数的最小正周期,则,
所以,
当时,,
所以是函数的一条对称轴,
故选:D
本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.
6.C
【解析】
利用复数的运算法则计算即可.
【详解】
,故虚部为.
故选:C.
本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.
7.C
【解析】
根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3门全排列,即可求解.
【详解】
由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,
剩余的3门全排列,安排在剩下的3个位置,有种,
所以“六艺”课程讲座不同的排课顺序共有种不同的排法.
故选:C.
本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
8.D
【解析】
试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.
考点:线性规划.
9.D
【解析】
解:x、y满足约束条件,表示的可行域如图:
目标函数z=x+2y经过C点时,函数取得最小值,
由解得C(2,1),
目标函数的最小值为:4
目标函数的范围是[4,+∞).
故选D.
10.D
【解析】
对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,
再由交集的定义求解即可.
【详解】
,
,.
故选:D
本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.
11.B
【解析】
分别取、的中点、,连接、、,利用二面角的定义转化二面角的平面角为,然后分别过点作平面的垂线与过点作平面的垂线交于点,在中计算出,再利用勾股定理计算出,即可得出球的半径,最后利用球体的表面积公式可得出答案.
【详解】
如下图所示,
分别取、的中点、,连接、、,
由于是以为直角等腰直角三角形,为的中点,,
,且、分别为、的中点,所以,,所以,,所以二面角的平面角为,
,则,且,所以,,,
是以为直角的等腰直角三角形,所以,的外心为点,同理可知,的外心为点,
分别过点作平面的垂线与过点作平面的垂线交于点,则点在平面内,如下图所示,
由图形可知,,
在中,,,
所以,,
所以,球的半径为,因此,球的表面积为.
故选:B.
本题考查球体的表面积,考查二面角的定义,解决本题的关键在于找出球心的位置,同时考查了计算能力,属于中等题.
12.A
【解析】
由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解.
【详解】
由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.
则恰好第三次就停止摸球的概率为.
故选:A.
本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.−196 −3
【解析】
由二项式定理及二项式展开式通项得:,令x=1,则1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.
【详解】
由二项式(1−2x)7展开式的通项得,
则,
令x=1,则,
所以a0+a1+…+a7=−3,
故答案为:−196,−3.
本题考查二项式定理及其通项,属于中等题.
14.
【解析】
基本事件总数,三人都收到礼物包含的基本事件个数.由此能求出三人都收到礼物的概率.
【详解】
三个小朋友之间准备送礼物,
约定每人只能送出一份礼物给另外两人中的一人(送给两个人的可能性相同),
基本事件总数,
三人都收到礼物包含的基本事件个数.
则三人都收到礼物的概率.
故答案为:.
本题考查古典概型概率的求法,考查运算求解能力,属于基础题.
15.
【解析】
解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.
【详解】
,,
.
故答案为:.
本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.
16.1
【解析】
设等比数列的公比为,再根据题意用基本量法求解公比,进而利用等比数列项之间的关系得即可.
【详解】
设等比数列的公比为.由,得,解得.又由,得.则.
故答案为:1
本题主要考查了等比数列基本量的求解方法,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)证明见解析;(2)证明见解析;
【解析】
(1)推导出,由是的中点,能证明是有中点.
(2)作于点,推导出平面,从而,由,能证明平面,由此能证明平面平面.
【详解】
证明:(1)在三棱锥中,
平面,平面平面,
平面,
,
在中,是的中点,是有中点.
(2)在三棱锥中,是锐角三角形,
在中,可作于点,
平面平面,平面平面,
平面,平面,
平面,,
,,
平面,
平面,平面平面.
本题考查线段中点的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.
18.(1);(2).
【解析】
(1)因为点在椭圆上,所以,然后,利用,,得出,进而求解即可
(2)设点的坐标为,直线的方程为,直线的方程为,分别联立方程:和,利用韦达定理,再利用,,即可求出的值
【详解】
(1)由椭圆的长半轴长为,得.
因为点在椭圆上,所以.
又因为,,所以,
所以(舍)或.
故椭圆的标准方程为.
(2)设点的坐标为,直线的方程为,直线的方程为.
据得.
据题意,得,得,
同理,得,
所以.
又可求,得,,
所以
.
本题考查椭圆标准方程的求解以及联立方程求定值的问题,联立方程求定值的关键在于利用韦达定理进行消参,属于中档题
19.(1)见解析(2)见解析
【解析】
(1)连结AC交BD于点O,连结OE,利用三角形中位线可得AP∥OE,从而可证AP∥平面EBD;
(2)先证明BD⊥平面PCD,再证明PC⊥平面BDE,从而可证BE⊥PC.
【详解】
证明:(1)连结AC交BD于点O,连结OE
因为四边形ABCD为平行四边形
∴O为AC中点,
又E为PC中点,
故AP∥OE,
又AP平面EBD,OE平面EBD
所以AP∥平面EBD ;
(2)∵△PCD为正三角形,E为PC中点
所以PC⊥DE
因为平面PCD⊥平面ABCD,
平面PCD平面ABCD=CD,
又BD平面ABCD,BD⊥CD
∴BD⊥平面PCD
又PC平面PCD,故PC⊥BD
又BDDE=D,BD平面BDE,DE平面BDE
故PC⊥平面BDE
又BE平面BDE,
所以BE⊥PC.
本题主要考查空间位置关系的证明,线面平行一般转化为线线平行来证明,直线与直线垂直通常利用线面垂直来进行证明,侧重考查逻辑推理的核心素养.
20.(1),;(2).
【解析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,结合可将曲线的极坐标方程化为直角坐标方程;
(2)计算出直线截圆所得弦长,并计算出原点到直线的距离,利用三角形的面积公式可求得的面积.
【详解】
(1)由得,故直线的普通方程是.
由,得,代入公式得,得,
故曲线的直角坐标方程是;
(2)因为曲线的圆心为,半径为,
圆心到直线的距离为,
则弦长.
又到直线的距离为,
所以.
本题考查参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线与圆中三角形面积的计算,考查计算能力,属于中等题.
21.(1)证明见解析 (2)
【解析】
(1)因为正方形ABCD所在平面与梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,
因为平面ABMN,平面ABMN,所以,,
因为,所以,
因为,所以,所以,
因为在直角梯形ABMN中,,所以,
所以,所以,因为,所以平面.
(2)如图,取BM的中点E,则,
又BM∥AN,所以四边形ABEN是平行四边形,所以NE∥AB,
又AB∥CD,所以NE∥CD,因为平面CDM,平面CDM,所以NE∥平面CDM,
所以点N到平面CDM的距离与点E到平面CDM的距离相等,
设点N到平面CDM的距离为h,由可得点B到平面CDM的距离为2h,
由题易得平面BCM,所以,且,
所以,
又,所以由可得,
解得,所以点N到平面CDM的距离为.
22.(1)整数的最大值为;(2)见解析.
【解析】
(1)将不等式变形为,构造函数,利用导数研究函数的单调性并确定其最值,从而得到正整数的最大值;
(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.
【详解】
(1)由得,
令,,
令,对恒成立,
所以,函数在上单调递增,
,,,,
故存在使得,即,
从而当时,有,,所以,函数在上单调递增;
当时,有,,所以,函数在上单调递减.
所以,,
,因此,整数的最大值为;
(2)由(1)知恒成立,,
令则,
,,,,
上述等式全部相加得,
所以,,
因此,
本题考查导数在函数单调性、最值中的应用,以及放缩法证明不等式的技巧,属于难题.
展开阅读全文