资源描述
2025年青海省海北市数学高三上期末调研模拟试题
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数与的图象上存在关于直线对称的点,则的取值范围是( )
A. B. C. D.
2.已知向量,(其中为实数),则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
3.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是( )
A. B. C. D.
4.设为虚数单位,复数,则实数的值是( )
A.1 B.-1 C.0 D.2
5.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为( )
A. B. C. D.
6.已知与之间的一组数据:
1
2
3
4
3.2
4.8
7.5
若关于的线性回归方程为,则的值为( )
A.1.5 B.2.5 C.3.5 D.4.5
7.已知,则“m⊥n”是“m⊥l”的
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
8.下列说法正确的是( )
A.“若,则”的否命题是“若,则”
B.在中,“”是“”成立的必要不充分条件
C.“若,则”是真命题
D.存在,使得成立
9.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是( )
A. B.
C. D.
10.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为( )
A. B. C. D.
11.设,是非零向量,若对于任意的,都有成立,则
A. B. C. D.
12.若点是角的终边上一点,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知等差数列的前n项和为Sn,若,则____.
14.已知两圆相交于两点,,若两圆圆心都在直线上,则的值是________________ .
15.安排名男生和名女生参与完成项工作,每人参与一项,每项工作至少由名男生和名女生完成,则不同的安排方式共有________种(用数字作答).
16.已知数列满足对任意,,则数列的通项公式__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知满足 ,且,求的值及的面积.(从①,②,③这三个条件中选一个,补充到上面问题中,并完成解答.)
18.(12分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().
(1)求抛物线C的极坐标方程;
(2)若抛物线C与直线l交于A,B两点,求的值.
19.(12分)已知函数
(1)当时,求不等式的解集;
(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.
20.(12分)选修4—5;不等式选讲.
已知函数.
(1)若的解集非空,求实数的取值范围;
(2)若正数满足,为(1)中m可取到的最大值,求证:.
21.(12分)如图,三棱锥中,,,,,.
(1)求证:;
(2)求直线与平面所成角的正弦值.
22.(10分)已知数列的前项和为,.
(1)求数列的通项公式;
(2)若,为数列的前项和.求证:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.
【详解】
解:由题可知,曲线与有公共点,即方程有解,
即有解,令,则,
则当时,;当时,,
故时,取得极大值,也即为最大值,
当趋近于时,趋近于,所以满足条件.
故选:C.
本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.
2.A
【解析】
结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.
【详解】
由,则,所以;而
当,则,解得或.所以
“”是“”的充分不必要条件.
故选:A
本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.
3.C
【解析】
根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.
【详解】
根据循环程序框图可知,
则,
,
,
,
,
此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,
故选:C.
本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.
4.A
【解析】
根据复数的乘法运算化简,由复数的意义即可求得的值.
【详解】
复数,
由复数乘法运算化简可得,
所以由复数定义可知,
解得,
故选:A.
本题考查了复数的乘法运算,复数的意义,属于基础题.
5.C
【解析】
利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.
【详解】
由平面平面,
平面平面,平面
所以平面,又平面
所以,又
所以作轴//,建立空间直角坐标系
如图
设,所以
则
所以
所以
故选:C
本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.
6.D
【解析】
利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.
【详解】
利用表格中数据,可得
又,
.
解得
故选:D
本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.
7.B
【解析】
构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.
【详解】
如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。
若令AD1=m,AB=n,则m⊥n,但m不垂直于
若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线
∴m⊥n是m⊥的必要不充分条件.
故选:B.
本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.
8.C
【解析】
A:否命题既否条件又否结论,故A错.
B:由正弦定理和边角关系可判断B错.
C:可判断其逆否命题的真假,C正确.
D:根据幂函数的性质判断D错.
【详解】
解:A:“若,则”的否命题是“若,则”,故 A错.
B:在中,,故“”是“”成立的必要充分条件,故B错.
C:“若,则”“若,则”,故C正确.
D:由幂函数在递减,故D错.
故选:C
考查判断命题的真假,是基础题.
9.C
【解析】
作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.
【详解】
如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.
故选:C
本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.
10.D
【解析】
由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.
【详解】
如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得,
∴.
正三棱锥外接球球心必在上,设球半径为,
则由得,解得,
∴.
故选:D.
本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.
11.D
【解析】
画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.
【详解】
由题意,得向量是所有向量中模长最小的向量,如图,
当,即时,最小,满足,对于任意的,
所以本题答案为D.
本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.
12.A
【解析】
根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.
【详解】
由题意,点是角的终边上一点,
根据三角函数的定义,可得,
则,故选A.
本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
由,,成等差数列,代入可得的值.
【详解】
解:由等差数列的性质可得:,,成等差数列,
可得:,代入,
可得:,
故答案为:.
本题主要考查等差数列前n项和的性质,相对不难.
14.
【解析】
根据题意,相交两圆的连心线垂直平分相交弦,可得与直线垂直,且的中点在这条直线上,列出方程解得即可得到结论.
【详解】
由,,设的中点为,
根据题意,可得,且,
解得,,,故.
故答案为:.
本题考查相交弦的性质,解题的关键在于利用相交弦的性质,即两圆的连心线垂直平分相交弦,属于基础题.
15.1296
【解析】
先从4个男生选2个一组,将4人分成三组,然后从4个女生选2个一组,将4人分成三组,然后全排列即可.
【详解】
由于每项工作至少由名男生和名女生完成,则先从4个男生选2个一组,将4人分成三组,所以男生的排法共有,同理女生的排法共有,故不同的安排共有种.
故答案为:1296
本题主要考查了排列组合的应用,考查了学生应用数学解决实际问题的能力.
16.
【解析】
利用累加法求得数列的通项公式,由此求得的通项公式.
【详解】
由题,
所以
故答案为:
本小题主要考查累加法求数列的通项公式,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.见解析
【解析】
选择①时:,,计算,根据正弦定理得到,计算面积得到答案;选择②时,,,故,为钝角,故无解;选择③时,,根据正弦定理解得,,根据正弦定理得到,计算面积得到答案.
【详解】
选择①时:,,故.
根据正弦定理:,故,故.
选择②时,,,故,为钝角,故无解.
选择③时,,根据正弦定理:,故,
解得,.
根据正弦定理:,故,故.
本题考查了三角恒等变换,正弦定理,面积公式,意在考查学生的计算能力和综合应用能力.
18.(1)(2)
【解析】
(1)利用极坐标和直角坐标的互化公式,,即可求得结果.
(2) 由的几何意义得,. 将代入抛物线C的方程,利用韦达定理,,即可求得结果.
【详解】
(1)因为,,
代入得,
所以抛物线C的极坐标方程为.
(2)将代入抛物线C的方程得,
所以,,
所以,
由的几何意义得,.
本题考查直角坐标和极坐标的转化,考查极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,难度一般.
19.(1)(2)
【解析】
(1)当时,不等式可化为:,再利用绝对值的意义,分,,讨论求解.
(2)根据可得,得到函数的图象与两坐标轴的交点坐标分别为,再利用三角形面积公式由求解.
【详解】
(1)当时,
不等式可化为:
①当时,不等式化为,
解得:
②当时,不等式化为,
解得:,
③当时,不等式化为解集为,
综上,不等式的解集为.
(2)由题得,
所以函数的图象与两坐标轴的交点坐标分别为,
的面积为,
由,
得(舍),或,
所以,参数的取值范围是.
本题主要考查绝对值不等式的解法和绝对值函数的应用,还考查分类讨论的思想和运算求解的能力,属于中档题.
20. (1);(2)见解析.
【解析】
试题分析:(1)讨论三种情况去绝对值符号,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因为,要证,只需证,即证,只需证 即可得结果.
试题解析:(1)去绝对值符号,可得
所以,
所以,解得,
所以实数的取值范围为.
(2)由(1)知,,所以.
因为,
所以要证,只需证,
即证,即证.
因为,所以只需证,
因为,∴成立,所以
解法二:x2+y2=2,x、y∈R+,x+y≥2xy
设:
证明:x+y-2xy=
=
令
, ∴
原式=
=
=
=
当时,
21.(1)证明见详解;(2)
【解析】
(1)取中点,根据,利用线面垂直的判定定理,可得平面,最后可得结果.
(2)利用建系,假设长度, 可得,以及平面的一个法向量,然后利用向量的夹角公式,可得结果.
【详解】
(1)取中点,连接,如图
由,
所以
由,平面
所以平面,又平面
所以
(2)假设,
由,,.
所以
则,所以
又,平面
所以平面,所以,
又,故建立空间直角坐标系,如图
设平面的一个法向量为
则
令,所以
则直线与平面所成角的正弦值为
本题考查线面垂直、线线垂直的应用,还考查线面角,学会使用建系的方法来解决立体几何问题,将几何问题代数化,化繁为简,属中档题.
22.(1)(2)证明见解析
【解析】
(1)利用求得数列的通项公式.
(2)先将缩小即,由此结合裂项求和法、放缩法,证得不等式成立.
【详解】
(1)∵,令,得.
又,两式相减,得.
∴.
(2)∵
.
又∵,,∴.
∴
.
∴.
本小题主要考查已知求,考查利用放缩法证明不等式,考查化归与转化的数学思想方法,属于中档题.
展开阅读全文