资源描述
2025-2026学年安徽省淮北师大附中数学高三第一学期期末达标测试试题
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知是等差数列的前项和,,,则( )
A.85 B. C.35 D.
2.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为( )
A. B. C.2 D.
3.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是( )
A. B. C. D.
4.设曲线在点处的切线方程为,则( )
A.1 B.2 C.3 D.4
5.若复数()是纯虚数,则复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.如图,平面与平面相交于,,,点,点,则下列叙述错误的是( )
A.直线与异面
B.过只有唯一平面与平行
C.过点只能作唯一平面与垂直
D.过一定能作一平面与垂直
7.设等比数列的前项和为,若,则的值为( )
A. B. C. D.
8.已知函数,则的值等于( )
A.2018 B.1009 C.1010 D.2020
9.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )
A.2对 B.3对
C.4对 D.5对
10.设为虚数单位,则复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( )
A.
B.
C.
D.
12.已知等式成立,则( )
A.0 B.5 C.7 D.13
二、填空题:本题共4小题,每小题5分,共20分。
13.随着国力的发展,人们的生活水平越来越好,我国的人均身高较新中国成立初期有大幅提高.为了掌握学生的体质与健康现状,合理制定学校体育卫生工作发展规划,某市进行了一次全市高中男生身高统计调查,数据显示全市30000名高中男生的身高(单位:)服从正态分布,且,那么该市身高高于的高中男生人数大约为__________.
14.已知“在中,”,类比以上正弦定理,“在三棱锥中,侧棱与平面所成的角为、与平面所成的角为,则________.
15.定义在上的奇函数满足,并且当时,则___
16.已知数列为等比数列,,则_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图中,为的中点,,,.
(1)求边的长;
(2)点在边上,若是的角平分线,求的面积.
18.(12分)已知函数()在定义域内有两个不同的极值点.
(1)求实数的取值范围;
(2)若有两个不同的极值点,,且,若不等式恒成立.求正实数的取值范围.
19.(12分)已知抛物线E:y2=2px(p>0),焦点F到准线的距离为3,抛物线E上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.线段AB的垂直平分线与x轴交于点 C.
(1)求抛物线E的方程;
(2)求△ABC面积的最大值.
20.(12分)设函数 .
(I)求的最小正周期;
(II)若且,求的值.
21.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.
(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;
(2)若点,为曲线上两动点,且满足,求面积的最大值.
22.(10分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.
(1)求证: 是的中点;
(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
将已知条件转化为的形式,求得,由此求得.
【详解】
设公差为,则,所以,,,.
故选:B
本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.
2.C
【解析】
由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可
【详解】
因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.
故选:C
本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.
3.B
【解析】
因为对A不符合定义域当中的每一个元素都有象,即可排除;
对B满足函数定义,故符合;
对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;
对D因为值域当中有的元素没有原象,故可否定.
故选B.
4.D
【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解
【详解】
因为,且在点处的切线的斜率为3,所以,即.
故选:D
本题考查导数的几何意义,考查运算求解能力,是基础题
5.B
【解析】
化简复数,由它是纯虚数,求得,从而确定对应的点的坐标.
【详解】
是纯虚数,则,,
,对应点为,在第二象限.
故选:B.
本题考查复数的除法运算,考查复数的概念与几何意义.本题属于基础题.
6.D
【解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.
【详解】
A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.
B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.
C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.
D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.
故选:D
本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.
7.C
【解析】
求得等比数列的公比,然后利用等比数列的求和公式可求得的值.
【详解】
设等比数列的公比为,,,,
因此,.
故选:C.
本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.
8.C
【解析】
首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,得到其周期为4,然后借助于三角函数的周期性确定其值即可.
【详解】
解: .
,
,
的周期为,
,, ,,
.
.
故选:C
本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题.
9.C
【解析】
画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案.
【详解】
该几何体是一个四棱锥,直观图如下图所示,易知平面平面,
作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,
又AD⊥CD,所以,CD⊥平面PAD,
所以平面平面,
同理可证:平面平面,
由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,
所以,AP⊥平面PCD,所以,平面平面,
所以该多面体各表面所在平面互相垂直的有4对.
本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.
10.A
【解析】
利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.
【详解】
,对应的点的坐标为,位于第一象限.
故选:A.
本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.
11.D
【解析】
由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D.
12.D
【解析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.
【详解】
由可知:
令,得;
令,得;
令,得,
得,,而,所以
.
故选:D
本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.
二、填空题:本题共4小题,每小题5分,共20分。
13.3000
【解析】
根据正态曲线的对称性求出,进而可求出身高高于的高中男生人数.
【详解】
解:全市30000名高中男生的身高(单位:)服从正态分布,且,
则,
该市身高高于的高中男生人数大约为.
故答案为:.
本题考查正态曲线的对称性的应用,是基础题.
14.
【解析】
类比,三角形边长类比三棱锥各面的面积,三角形内角类比三棱锥中侧棱与面所成角.
【详解】
,故,
本题考查类比推理.类比正弦定理可得,类比时有结构类比,方法类比等.
15.
【解析】
根据所给表达式,结合奇函数性质,即可确定函数对称轴及周期性,进而由的解析式求得的值.
【详解】
满足,
由函数对称性可知关于对称,
且令,代入可得,
由奇函数性质可知,所以
令,代入可得,
所以是以4为周期的周期函数,
则
当时,
所以,
所以,
故答案为:.
本题考查了函数奇偶性与对称性的综合应用,周期函数的判断及应用,属于中档题.
16.81
【解析】
设数列的公比为,利用等比数列通项公式求出,代入等比数列通项公式即可求解.
【详解】
设数列的公比为,由题意知,
因为,由等比数列通项公式可得,
,解得,
由等比数列通项公式可得,
.
故答案为:
本题考查等比数列通项公式;考查运算求解能力;属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)10;(2).
【解析】
(1)由题意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,进而解得BC的值.(2)由(1)可知△ADC为直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分线的性质可得,根据S△ABC=S△BCE+S△ACE可求S△BCE的值.
【详解】
(1)因为在边上,所以,
在和中由余弦定理,得,
因为,,,,
所以,所以,.
所以边的长为10.
(2)由(1)知为直角三角形,所以,.
因为是的角平分线,
所以.
所以,所以.
即的面积为.
本题主要考查了余弦定理,三角形的面积公式,角平分线的性质在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.
18.(1);(2).
【解析】
(1)求导得到有两个不相等实根,令,计算函数单调区间得到值域,得到答案.
(2),是方程的两根,故,化简得到,设函数,讨论范围,计算最值得到答案.
【详解】
(1)由题可知有两个不相等的实根,
即:有两个不相等实根,令,
,,
,;,,
故在上单增,在上单减,∴.
又,时,;时,,
∴,即.
(2)由(1)知,,是方程的两根,
∴,则
因为在单减,∴,又,∴
即,两边取对数,并整理得:
对恒成立,
设,,
,
当时,对恒成立,
∴在上单增,故恒成立,符合题意;
当时,,时,
∴在上单减,,不符合题意.
综上,.
本题考查了根据极值点求参数,恒成立问题,意在考查学生的计算能力和综合应用能力.
19.(1)y2=6x(2).
【解析】
(1)根据抛物线定义,写出焦点坐标和准线方程,列方程即可得解;
(2)根据中点坐标表示出|AB|和点到直线的距离,得出面积,利用均值不等式求解最大值.
【详解】
(1)抛物线E:y2=2px(p>0),焦点F(,0)到准线x的距离为3,可得p=3,即有抛物线方程为y2=6x;
(2)设线段AB的中点为M(x0,y0),则,
y0,kAB,
则线段AB的垂直平分线方程为y﹣y0(x﹣2),①
可得x=5,y=0是①的一个解,所以AB的垂直平分线与x轴的交点C为定点,
且点C(5,0),由①可得直线AB的方程为y﹣y0(x﹣2),即x(y﹣y0)+2 ②
代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0 ③,
由题意y1,y2是方程③的两个实根,且y1≠y2,
所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,
|AB|
,
又C(5,0)到线段AB的距离h=|CM|,
所以S△ABC|AB|h•
,
当且仅当9+y02=21﹣2y02,即y0=±,A(,),B(,),
或A(,),B(,)时等号成立,
所以S△ABC的最大值为.
此题考查根据焦点和准线关系求抛物线方程,根据直线与抛物线位置关系求解三角形面积的最值,表示三角形的面积关系常涉及韦达定理整体代入,抛物线中需要考虑设点坐标的技巧,处理最值问题常用函数单调性求解或均值不等式求最值.
20. (I);(II)
【解析】
(I)化简得到,得到周期.
(II) ,故,根据范围判断,代入计算得到答案.
【详解】
(I)
,故.
(II) ,故,,
,故,,
故,故,
.
本题考查了三角函数的周期,三角恒等变换,意在考查学生的计算能力和综合应用能力.
21.(1);(2)
【解析】
(1)消去参数,将圆的参数方程,转化为普通方程,再由圆心到直线的距离等于半径,可求得圆的普通方程,最后利用求得圆的极坐标方程.
(2)利用圆的参数方程以及辅助角公式,由此求得的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.
【详解】
(1)由题意得:,:
因为曲线和相切,所以,即:;
(2)设,
所以
所以当时,面积最大值为
本小题主要考查参数方程转化为普通方程,考查直角坐标方程转化为极坐标方程,考查利用参数的方法求三角形面积的最值,属于中档题.
22. (1) 见解析;(2).
【解析】
试题分析:(1)连交于可得是中点,再根据面可得进而根据中位线定理可得结果;(2)取中点,由(1)知两两垂直. 以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系,求出面的一个法向量,用表示面的一个法向量,由可得结果.
试题解析:(1)证明:连交于,连是矩形,是中点.又面,且是面与面的交线,是的中点.
(2)取中点,由(1)知两两垂直. 以为原点,所在直线分别为轴,
轴,轴建立空间直角坐标系(如图),则各点坐标为.
设存在满足要求,且,则由得:,面的一个法向量为,面的一个法向量为,由,得,解得,故存在,使二面角为直角,此时.
展开阅读全文