资源描述
2025-2026学年黑龙江省牡丹江市三中数学高三第一学期期末教学质量检测试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,,,则的最小值为( )
A. B. C. D.
2.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( )
A. B.2 C.4 D.
3.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是( )
A.直线 B.直线 C.直线 D.直线
4.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( )
A. B. C. D.
5.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为( )
A. B. C. D.
6.已知数列为等比数列,若,且,则( )
A. B.或 C. D.
7.将函数的图像向左平移个单位得到函数的图像,则的最小值为( )
A. B. C. D.
8.已知向量,,则与共线的单位向量为( )
A. B.
C.或 D.或
9.已知集合,集合,若,则( )
A. B. C. D.
10.学业水平测试成绩按照考生原始成绩从高到低分为、、、、五个等级.某班共有名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为的学生有人,这两科中仅有一科等级为的学生,其另外一科等级为,则该班( )
A.物理化学等级都是的学生至多有人
B.物理化学等级都是的学生至少有人
C.这两科只有一科等级为且最高等级为的学生至多有人
D.这两科只有一科等级为且最高等级为的学生至少有人
11.若表示不超过的最大整数(如,,),已知,,,则( )
A.2 B.5 C.7 D.8
12.函数的图象为C,以下结论中正确的是( )
①图象C关于直线对称;
②图象C关于点对称;
③由y =2sin2x的图象向右平移个单位长度可以得到图象C.
A.① B.①② C.②③ D.①②③
二、填空题:本题共4小题,每小题5分,共20分。
13.边长为2的正方形经裁剪后留下如图所示的实线围成的部分,将所留部分折成一个正四棱锥.当该棱锥的体积取得最大值时,其底面棱长为________.
14.若x,y满足,则的最小值为________.
15.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.
16.已知变量,满足约束条件,则的最小值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在正四棱柱中,已知,.
(1)求异面直线与直线所成的角的大小;
(2)求点到平面的距离.
18.(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;
(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:
①点的极角;
②面积的取值范围.
19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.
(1)求曲线的参数方程;
(2)求面积的最大值.
20.(12分)已知,设函数
(I)若,求的单调区间:
(II)当时,的最小值为0,求的最大值.注:…为自然对数的底数.
21.(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.
(1)求的方程;
(2)若点在圆上,点为坐标原点,求的取值范围.
22.(10分)已知函数.
(1)求函数的零点;
(2)设函数的图象与函数的图象交于,两点,求证:;
(3)若,且不等式对一切正实数x恒成立,求k的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
,选B
2.C
【解析】
设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.
【详解】
圆可化为.
设,
则的斜率分别为,
所以的方程为,即,
,即,
由于都过点,所以,
即都在直线上,
所以直线的方程为,恒过定点,
即直线过圆心,
则直线截圆所得弦长为4.
故选:C.
本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.
3.C
【解析】
充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与 相交,判断C的正误.根据,判断D的正误.
【详解】
在正方体中,因为 ,所以 平面,故A正确.
因为,所以,所以平面 故B正确.
因为,所以平面,故D正确.
因为与 相交,所以 与平面 相交,故C错误.
故选:C
本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.
4.B
【解析】
分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.
【详解】
从“八音”中任取不同的“两音”共有种取法;
“两音”中含有打击乐器的取法共有种取法;
所求概率.
故选:.
本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.
5.B
【解析】
由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.
【详解】
由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,
由于,,∴,∴,,
∴点坐标为,代入抛物线方程得,,
∴,.
故选:B.
本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.
6.A
【解析】
根据等比数列的性质可得,通分化简即可.
【详解】
由题意,数列为等比数列,则,
又,即,
所以,,
.
故选:A.
本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.
7.B
【解析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.
【详解】
将函数的图象向左平移个单位,
得到,
此时与函数的图象重合,
则,即,,
当时,取得最小值为,
故选:.
本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.
8.D
【解析】
根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案.
【详解】
因为,,则,
所以,
设与共线的单位向量为,
则,
解得 或
所以与共线的单位向量为或.
故选:D.
本题考查向量的坐标运算以及共线定理和单位向量的定义.
9.A
【解析】
根据或,验证交集后求得的值.
【详解】
因为,所以或.当时,,不符合题意,当时,.故选A.
本小题主要考查集合的交集概念及运算,属于基础题.
10.D
【解析】
根据题意分别计算出物理等级为,化学等级为的学生人数以及物理等级为,化学等级为的学生人数,结合表格中的数据进行分析,可得出合适的选项.
【详解】
根据题意可知,名学生减去名全和一科为另一科为的学生人(其中物理化学的有人,物理化学的有人),
表格变为:
物理
化学
对于A选项,物理化学等级都是的学生至多有人,A选项错误;
对于B选项,当物理和,化学都是时,或化学和,物理都是时,物理、化学都是的人数最少,至少为(人),B选项错误;
对于C选项,在表格中,除去物理化学都是的学生,剩下的都是一科为且最高等级为的学生,
因为都是的学生最少人,所以一科为且最高等级为的学生最多为(人),
C选项错误;
对于D选项,物理化学都是的最多人,所以两科只有一科等级为且最高等级为的学生最少(人),D选项正确.
故选:D.
本题考查合情推理,考查推理能力,属于中等题.
11.B
【解析】
求出,,,,,,判断出是一个以周期为6的周期数列,求出即可.
【详解】
解:.,
∴,,
,
同理可得:;;.;,,…….
∴.
故是一个以周期为6的周期数列,
则.
故选:B.
本题考查周期数列的判断和取整函数的应用.
12.B
【解析】
根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.
【详解】
因为,
又,所以①正确.
,所以②正确.
将的图象向右平移个单位长度,得,所以③错误.
所以①②正确,③错误.
故选:B
本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
根据题意,建立棱锥体积的函数,利用导数求函数的最大值即可.
【详解】
设底面边长为,则斜高为,即此四棱锥的高为,
所以此四棱锥体积为,
令,
令,
易知函数在时取得最大值.
故此时底面棱长.
故答案为:.
本题考查棱锥体积的求解,涉及利用导数研究体积最大值的问题,属综合中档题.
14.5
【解析】
先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。
【详解】
作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.
故答案为:4
本题考查不含参数的线性规划问题,是基础题。
15.
【解析】
根据程序框图得到程序功能,结合分段函数进行计算即可.
【详解】
解:程序的功能是计算,
若输出的实数的值为,
则当时,由得,
当时,由,此时无解.
故答案为:.
本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题.
16.-5
【解析】
画出,满足的可行域,当目标函数经过点时,最小,求解即可。
【详解】
画出,满足的可行域,由解得,当目标函数经过点时,取得最小值为-5.
本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想。需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得。
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1);(2).
【解析】
(1)建立空间坐标系,通过求向量与向量的夹角,转化为异面直线与直线所成的角的大小;(2)先求出面的一个法向量,再用点到面的距离公式算出即可.
【详解】
以为原点,所在直线分别为轴建系,
设
所以,
,
所以异面直线与直线所成的角的余弦值为 ,异面直线与直线所成的角的大小为.
(2)因为, ,设是面的一个法向量,
所以有 即 ,令 , ,故,
又,所以点到平面的距离为.
本题主要考查向量法求异面直线所成角的大小和点到面的距离,意在考查学生的数学建模以及数学运算能力.
18.(1)曲线为圆心在原点,半径为2的圆.的极坐标方程为(2)①②
【解析】
(1)求得曲线伸缩变换后所得的参数方程,消参后求得的普通方程,判断出对应的曲线,并将的普通方程转化为极坐标方程.
(2)
①将的极角代入直线的极坐标方程,由此求得点的极径,判断出为等腰三角形,求得直线的普通方程,由此求得,进而求得,从而求得点的极角.
②解法一:利用曲线的参数方程,求得曲线上的点到直线的距离的表达式,结合三角函数的知识求得的最小值和最大值,由此求得面积的取值范围.
解法二:根据曲线表示的曲线,利用圆的几何性质求得圆上的点到直线的距离的最大值和最小值,进而求得面积的取值范围.
【详解】
(1)因为曲线的参数方程为(为参数),
因为则曲线的参数方程
所以的普通方程为.所以曲线为圆心在原点,半径为2的圆.
所以的极坐标方程为,即.
(2)①点的极角为,代入直线的极坐标方程得点
极径为,且,所以为等腰三角形,
又直线的普通方程为,
又点的极角为锐角,所以,所以,
所以点的极角为.
②解法1:直线的普通方程为.
曲线上的点到直线的距离
.
当,即()时,
取到最小值为.
当,即()时,
取到最大值为.
所以面积的最大值为;
所以面积的最小值为;
故面积的取值范围.
解法2:直线的普通方程为.
因为圆的半径为2,且圆心到直线的距离,
因为,所以圆与直线相离.
所以圆上的点到直线的距离最大值为,
最小值为.
所以面积的最大值为;
所以面积的最小值为;
故面积的取值范围.
本小题考查坐标变换,极径与极角;直线,圆的极坐标方程,圆的参数方程,直线的极坐标方程与普通方程,点到直线的距离等.考查数学运算能力,包括运算原理的理解与应用、运算方法的选择与优化、运算结果的检验与改进等.也兼考了数学抽象素养、逻辑推理、数学运算、直观想象等核心素养.
19.(1)(为参数);(2).
【解析】
(1)根据伸缩变换结合曲线的参数方程可得出曲线的参数方程;
(2)将曲线的方程化为普通方程,然后化为极坐标方程,设点的极坐标为,点的极坐标为,将这两点的极坐标代入椭圆的极坐标方程,得出和关于的表达式,然后利用三角恒等变换思想即可求出面积的最大值.
【详解】
(1)由于曲线的参数方程为(为参数),
将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,
则曲线的参数方程为(为参数);
(2)将曲线的参数方程化为普通方程得,
化为极坐标方程得,即,
设点的极坐标为,点的极坐标为,
将这两点的极坐标代入椭圆的极坐标方程得,,
的面积为,
当时,的面积取到最大值.
本题考查参数方程、极坐标方程与普通方程的互化,考查了伸缩变换,同时也考查了利用极坐标方程求解三角形面积的最值问题,要熟悉极坐标方程所适用的基本类型,考查分析问题和解决问题的能力,属于中等题.
20. (I)详见解析;(II)
【解析】
(I)求导得到,讨论和两种情况,得到答案.
(II) ,故,取,,求导得到单调性,得到,得到答案.
【详解】
(I) ,,
当时,恒成立,函数单调递增;
当时,,,当时,函数单调递减;
当时,函数单调递增.
综上所述:时,在上单调递增;时,在上单调递减,在上单调递增.
(II) 在上恒成立;
,故,
现在证明存在,,使的最小值为0.
取,,(此时可使),
,,
故当上时,,故,
在上单调递增,,
故在上单调递减,在上单调递增,故.
综上所述:的最大值为.
本题考查了函数单调性,函数的最值问题,意在考查学生的计算能力和综合应用能力.
21.(1);(2).
【解析】
(1)根据焦点坐标和离心率,结合椭圆中的关系,即可求得的值,进而得椭圆的标准方程.
(2)设出直线的方程为,由题意可知为中点.联立直线与椭圆方程,由韦达定理表示出,由判别式可得;由平面向量的线性运算及数量积定义,化简可得,代入弦长公式化简;由中点坐标公式可得点的坐标,代入圆的方程,化简可得,代入数量积公式并化简,由换元法令,代入可得,再令及,结合函数单调性即可确定的取值范围,即确定的取值范围,因而可得的取值范围.
【详解】
(1)分别是椭圆的左焦点和右焦点,
则,椭圆的离心率为
则解得,
所以,
所以的方程为.
(2)设直线的方程为,点满足,则为中点,点在圆上,设,
联立直线与椭圆方程,化简可得,
所以
则,化简可得,
而
由弦长公式代入可得
为中点,则
点在圆上,代入化简可得,
所以
令,则,,
令,则
令,则,
所以,
因为在内单调递增,所以,
即
所以
本题考查了椭圆的标准方程求法,直线与椭圆的位置关系综合应用,由韦达定理研究参数间的关系,平面向量的线性运算与数量积运算,弦长公式的应用及换元法在求取值范围问题中的综合应用,计算量大,属于难题.
22. (1)x=1 (2)证明见解析 (3)
【解析】
(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;
(2)转化思想,要证 ,即证 ,即证,构造函数进而求证;
(3)不等式 对一切正实数恒成立,,设,分类讨论进而求解.
【详解】
解:(1)令,所以,
当时,,在上单调递增;
当时,,在单调递减;
所以,所以的零点为.
(2)由题意, ,
要证 ,即证,即证,
令,则,由(1)知,当且仅当时等号成立,所以,
即,所以原不等式成立.
(3)不等式 对一切正实数恒成立,
,
设,,
记,△,
①当△时,即时,恒成立,故单调递增.
于是当时,,又,故,
当时,,又,故,
又当时,,
因此,当时,,
②当△,即时,设的两个不等实根分别为,,
又,于是,
故当时,,从而在单调递减;
当时,,此时,于是,
即 舍去,
综上,的取值范围是.
(1)考查函数求导,根据导函数确定函数的单调性,零点;(2)考查转化思想,构造函数求极值;(3)考查分类讨论思想,函数的单调性,函数的求导;属于难题.
展开阅读全文