资源描述
2025-2026学年河南省联盟高三数学第一学期期末达标检测模拟试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( )
A.12种 B.24种 C.36种 D.72种
2.已知函数的图像的一条对称轴为直线,且,则的最小值为( )
A. B.0 C. D.
3.把满足条件(1),,(2),,使得的函数称为“D函数”,下列函数是“D函数”的个数为( )
① ② ③ ④ ⑤
A.1个 B.2个 C.3个 D.4个
4.设为定义在上的奇函数,当时,(为常数),则不等式的解集为( )
A. B. C. D.
5.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分不必要条件
6.等比数列中,,则与的等比中项是( )
A.±4 B.4 C. D.
7.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )
A. B. C. D.
8.如图,平面ABCD,ABCD为正方形,且,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为( )
A. B. C. D.
9.设函数恰有两个极值点,则实数的取值范围是( )
A. B.
C. D.
10.已知椭圆:的左、右焦点分别为,,点,在椭圆上,其中,,若,,则椭圆的离心率的取值范围为( )
A. B.
C. D.
11.曲线在点处的切线方程为( )
A. B. C. D.
12.在中,“”是“为钝角三角形”的( )
A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,则_____。
14.已知数列的前项和为,,,,则满足的正整数的所有取值为__________.
15.一个四面体的顶点在空间直角坐标系中的坐标分别是,,,,则该四面体的外接球的体积为__________.
16.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设数列的前n项和满足,,,
(1)证明:数列是等差数列,并求其通项公式﹔
(2)设,求证:.
18.(12分)已知椭圆的右顶点为,点在轴上,线段与椭圆的交点在第一象限,过点的直线与椭圆相切,且直线交轴于.设过点且平行于直线的直线交轴于点.
(Ⅰ)当为线段的中点时,求直线的方程;
(Ⅱ)记的面积为,的面积为,求的最小值.
19.(12分)已知函数.
(1)证明:当时,;
(2)若函数只有一个零点,求正实数的值.
20.(12分)等差数列中,,,分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
第一列
第二列
第三列
第一行
5
8
2
第二行
4
3
12
第三行
16
6
9
(1)请选择一个可能的组合,并求数列的通项公式;
(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,,成等比数列,若有,请求出的值;若没有,请说明理由.
21.(12分)如图,在三棱柱中,,,,为的中点,且.
(1)求证:平面;
(2)求锐二面角的余弦值.
22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.
(1)设直线l的极坐标方程为,若直线l与曲线C交于两点A.B,求AB的长;
(2)设M、N是曲线C上的两点,若,求面积的最大值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.
【详解】
不同分配方法总数为种.
故选:C
此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.
2.D
【解析】
运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.
【详解】
由题意,函数为辅助角,
由于函数的对称轴的方程为,且,
即,解得,所以,
又由,所以函数必须取得最大值和最小值,
所以可设,,
所以,
当时,的最小值,故选D.
本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.
3.B
【解析】
满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.
【详解】
满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1);
③不满足(2);④⑤均满足(1)(2).
故选:B.
本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.
4.D
【解析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.
【详解】
因为在上是奇函数.所以,解得,所以当时,
,且时,单调递增,所以
在上单调递增,因为,
故有,解得.
故选:D.
本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.
5.A
【解析】
试题分析:α⊥β, b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.
考点:充分条件、必要条件.
6.A
【解析】
利用等比数列的性质可得 ,即可得出.
【详解】
设与的等比中项是.
由等比数列的性质可得, .
∴与的等比中项
故选A.
本题考查了等比中项的求法,属于基础题.
7.D
【解析】
设,,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;
【详解】
解:设,,由,得,
∵,解得或,∴,.
又由,得,∴或,∴,
∵,
∴,
又∵,
∴代入解得.
故选:D
本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.
8.C
【解析】
分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值.
【详解】
由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系.
设.则.
故异面直线EF与BD所成角的余弦值为.
故选:C
本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平.
9.C
【解析】
恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.
【详解】
由题意知函数的定义域为,
.
因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.
令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.
故选:C
本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.
10.C
【解析】
根据可得四边形为矩形, 设,,根据椭圆的定义以及勾股定理可得,再分析的取值范围,进而求得再求离心率的范围即可.
【详解】
设,,由,,知,
因为,在椭圆上,,
所以四边形为矩形,;
由,可得,
由椭圆的定义可得,①,
平方相减可得②,
由①②得;
令,
令,
所以,
即,
所以,
所以,
所以,
解得.
故选:C
本题主要考查了椭圆的定义运用以及构造齐次式求椭圆的离心率的问题,属于中档题.
11.A
【解析】
将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.
【详解】
曲线,即,
当时,代入可得,所以切点坐标为,
求得导函数可得,
由导数几何意义可知,
由点斜式可得切线方程为,即,
故选:A.
本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.
12.C
【解析】
分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.
详解:由题意可得,在中,因为,
所以,因为,
所以,,
结合三角形内角的条件,故A,B同为锐角,因为,
所以,即,所以,
因此,所以是锐角三角形,不是钝角三角形,
所以充分性不满足,
反之,若是钝角三角形,也推不出“,故必要性不成立,
所以为既不充分也不必要条件,故选D.
点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
由已知求,再利用和角正切公式,求得,
【详解】
因为所以cos
因此.
本题考查了同角三角函数基本关系式与和角的正切公式。
14.20,21
【解析】
由题意知数列奇数项和偶数项分别为等差数列和等比数列,则根据为奇数和为偶数分别算出求和公式,代入数值检验即可.
【详解】
解: 由题意知数列的奇数项构成公差为的等差数列,
偶数项构成公比为的等比数列,
则;
.
当时, ,.
当时, ,.
由此可知,满足的正整数的所有取值为20,21.
故答案为: 20,21
本题考查等差数列与等比数列通项与求和公式,是综合题,分清奇数项和偶数项是解题的关键.
15.
【解析】
将四面体补充为长宽高分别为的长方体,体对角线即为外接球的直径,从而得解.
【详解】
采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为,长方体的外接球即为该四面体的外接球,外接球的直径即为长方体的体对角线,所以球半径为,体积为.
本题主要考查了四面体外接球的常用求法:补体法,通过补体得到长方体的外接球从而得解,属于基础题.
16.60
【解析】
试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.
考点:排列组合.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)证明见解析,;(2)证明见解析
【解析】
(1)由,作差得到,进一步得到,再作差即可得到,从而使问题得到解决;
(2),求和即可.
【详解】
(1),,
两式相减:①
用换,得②
②—①,得,即,
所以数列是等差数列,又,
∴,,公差,所以.
(II)
.
本题考查由与的关系求通项以及裂项相消法求数列的和,考查学生的计算能力,是一道容易题.
18.(Ⅰ)直线的方程为(Ⅱ)
【解析】
(1)设点,利用中点坐标公式表示点B,并代入椭圆方程解得,从而求出直线的方程;(2)设直线的方程为:,表示点,然后联立方程,利用相切得出,然后求出切点,再设出设直线的方程,求出点,利用两点坐标,求出直线的方程,从而求出,最后利用以上已求点的坐标表示面积,根据基本不等式求最值即可.
【详解】
解:(Ⅰ)由椭圆,可得:
由题意:设点,当为的中点时,可得:
代入椭圆方程,可得:所以:
所以.故直线的方程为.
(Ⅱ)由题意,直线的斜率存在且不为0,
故设直线的方程为:
令,得:,所以:.
联立:,消,整理得:.
因为直线与椭圆相切,所以.
即.
设,则,,
所以.
又直线直线,所以设直线的方程为:.
令,得,所以:.
因为,
所以直线的方程为:.
令,得,所以:.
所以.
又因为.
.
所以(当且仅当,即时等号成立)
所以.
本小题主要考查直线和椭圆的位置关系,考查直线方程以及求椭圆中的最值问题,最值问题一般是把目标式求出,结合目标式特点选用合适的方法求解,侧重考查数学运算的核心素养,本题利用了基本不等式求最小值的方法,运算量较大,属于难题.
19.(1)证明见解析;(2).
【解析】
(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可
(2)直接求导可得,,令,得或,故根据0与的大小关系来进行分类讨论即可
【详解】
证明:(1)令,则.
分析知,函数的增区间为,减区间为.
所以当时,.
所以,即,
所以.
所以当时,.
解:(2)因为,所以.
讨论:
①当时,,此时函数在区间上单调递减.
又,
故此时函数仅有一个零点为0;
②当时,令,得,故函数的增区间为,减区间为,.
又极大值,所以极小值.
当时,有.
又,此时,
故当时,函数还有一个零点,不符合题意;
③当时,令得,故函数的增区间为,减区间为,.
又极小值,所以极大值.
若,则,得,
所以
,
所以当且时,,故此时函数还有一个零点,不符合题意.
综上,所求实数的值为.
本题考查不等式的恒成立问题和函数的零点问题,本题的难点在于把导数化成因式分解的形式,如,进而分类讨论,本题属于难题
20.(1)见解析,或;(2)存在,.
【解析】
(1)满足题意有两种组合:①,,,②,,,分别计算即可;
(2)由(1)分别讨论两种情况,假设存在正整数,使得,,成等比数列,即,解方程是否存在正整数解即可.
【详解】
(1)由题意可知:有两种组合满足条件:
①,,,此时等差数列,,,
所以其通项公式为.
②,,,此时等差数列,,,
所以其通项公式为.
(2)若选择①,.
则.
若,,成等比数列,则,
即,整理,得,即,
此方程无正整数解,故不存在正整数,使,,成等比数列.
若选则②,,
则,
若,,成等比数列,则,
即,整理得,因为为正整数,所以.
故存在正整数,使,,成等比数列.
本题考查等差数列的通项公式及前n项和,涉及到等比数列的性质,是一道中档题.
21.(1)证明见解析;(2).
【解析】
(1)证明后可得平面,从而得,结合已知得线面垂直;
(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值.
【详解】
(1)证明:因为,为中点,
所以,又,,
所以平面,又平面,
所以,又,,
所以平面.
(2)由已知及(1)可知,,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则
,,,,,.
设平面的法向量,则
,即,令,则;
设平面的法向量,则
,即,令,则,
所以.
故锐二面角的余弦值为.
本题考查证明线面垂直,解题时注意 线面垂直与线线垂直的相互转化.考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论.
22.(1);(2)1.
【解析】
(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;
(2),,由(1)通过计算得到,即最大值为1.
【详解】
(1)将曲线C的参数方程化为普通方程为,
即;
再将,,代入上式,
得,
故曲线C的极坐标方程为,
显然直线l与曲线C相交的两点中,
必有一个为原点O,不妨设O与A重合,
即.
(2)不妨设,,
则面积为
当,即取时,.
本题考查参数方程、普通方程、极坐标方程间的互化,三角形面积的最值问题,是一道容易题.
展开阅读全文