收藏 分销(赏)

决策树java代码.doc

上传人:仙人****88 文档编号:12011189 上传时间:2025-08-27 格式:DOC 页数:11 大小:59.50KB 下载积分:10 金币
下载 相关 举报
决策树java代码.doc_第1页
第1页 / 共11页
决策树java代码.doc_第2页
第2页 / 共11页


点击查看更多>>
资源描述
import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedHashSet; class TreeNode { String element; // 该值为数据的属性名称 String value; // 上一个分裂属性在此结点的值 LinkedHashSet<TreeNode> childs; // 结点的子结点,以有顺序的链式哈希集存储 public TreeNode() { this.element=null; this.value=null; this.childs=null; } public TreeNode(String value) { this.element=null; this.value=value; this.childs=null; } public String getElement() { return this.element; } public void setElement(String e) { this.element=e; } public String getValue() { return this.value; } public void setValue(String v) { this.value=v; } public LinkedHashSet<TreeNode> getChilds() { return this.childs; } public void setChilds(LinkedHashSet<TreeNode> childs) { this.childs=childs; } } // 决策树类 class DecisionTree { TreeNode root; // 决策树的树根结点 public DecisionTree() { root=new TreeNode(); } public DecisionTree(TreeNode root) { this.root=root; } public TreeNode getRoot() { return root; } public void setRoot(TreeNode root) { this.root=root; } public String selectAtrribute(TreeNode node, String[][] deData, boolean flags[], LinkedHashSet<String> atrributes, HashMap<String, Integer> attrIndexMap) { // Gain数组存放当前结点未分类属性的Gain值 double Gain[]=new double[atrributes.size()]; // 每条数据中归类的下标,为每条数据的最后一个值 int class_index=deData[0].length - 1; // 属性名,该结点在该属性上进行分类 String return_atrribute=null; // 计算每个未分类属性的 Gain值 int count=0; // 计算到第几个属性 for(String atrribute : atrributes) { // 该属性有多少个值,该属性有多少个分类 int values_count, class_count; // 属性值对应的下标 int index=attrIndexMap.get(atrribute); // 存放属性的各个值和分类值 LinkedHashSet<String> values=new LinkedHashSet<String>(); LinkedHashSet<String> classes=new LinkedHashSet<String>(); for(int i=0; i < deData.length; i++) { if(flags[i] == true) { values.add(deData[i][index]); classes.add(deData[i][class_index]); } } values_count=values.size(); class_count=classes.size(); int values_vector[]=new int[values_count * class_count]; int class_vector[]=new int[class_count]; for(int i=0; i < deData.length; i++) { if(flags[i] == true) { int j=0; for(String v : values) { if(deData[i][index].equals(v)) { break; } else { j++; } } int k=0; for(String c : classes) { if(deData[i][class_index].equals(c)) { break; } else { k++; } } values_vector[j * class_count + k]++; class_vector[k]++; } } double InfoD=0.0; double class_total=0.0; for(int i=0; i < class_vector.length; i++) { class_total+=class_vector[i]; } for(int i=0; i < class_vector.length; i++) { if(class_vector[i] == 0) { continue; } else { double d=Math.log(class_vector[i] / class_total) / Math.log(2.0) * class_vector[i] / class_total; InfoD=InfoD - d; } } // 计算InfoA double InfoA=0.0; for(int i=0; i < values_count; i++) { double middle=0.0; double attr_count=0.0; for(int j=0; j < class_count; j++) { attr_count+=values_vector[i * class_count + j]; } for(int j=0; j < class_count; j++) { if(values_vector[i * class_count + j] != 0) { double k=values_vector[i * class_count + j]; middle=middle - Math.log(k / attr_count) / Math.log(2.0) * k / attr_count; } } InfoA+=middle * attr_count / class_total; } Gain[count]=InfoD - InfoA; count++; } double max=0.0; int i=0; for(String atrribute : atrributes) { if(Gain[i] > max) { max=Gain[i]; return_atrribute=atrribute; } i++; } return return_atrribute; } public void buildDecisionTree(TreeNode node, String[][] deData, boolean flags[], LinkedHashSet<String> attributes, HashMap<String, Integer> attrIndexMap) { // 如果待分类属性已空 if(attributes.isEmpty() == true) { // 从数据集中选择多数类,遍历符合条件的所有数据 HashMap<String, Integer> classMap=new HashMap<String, Integer>(); int classIndex=deData[0].length - 1; for(int i=0; i < deData.length; i++) { if(flags[i] == true) { if(classMap.containsKey(deData[i][classIndex])) { int count=classMap.get(deData[i][classIndex]); classMap.put(deData[i][classIndex], count + 1); } else { classMap.put(deData[i][classIndex], 1); } } } // 选择多数类 String mostClass=null; int mostCount=0; Iterator<String> it=classMap.keySet().iterator(); while(it.hasNext()) { String strClass=(String) it.next(); if(classMap.get(strClass) > mostCount) { mostClass=strClass; mostCount=classMap.get(strClass); } } // 对结点进行赋值,该结点为叶结点 node.setElement(mostClass); node.setChilds(null); System.out.println("yezhi:" + node.getElement() + ":" + node.getValue()); return; } // 如果待分类数据全都属于一个类 int class_index=deData[0].length - 1; String class_name=null; HashSet<String> classSet=new HashSet<String>(); for(int i=0; i < deData.length; i++) { if(flags[i] == true) { class_name=deData[i][class_index]; classSet.add(class_name); } } // 则该结点为叶结点,设置有关值,然后返回 if(classSet.size() == 1) { node.setElement(class_name); node.setChilds(null); System.out.println("leaf:" + node.getElement() + ":" + node.getValue()); return; } // 给定的分枝没有元组,是不是有这种情况? // 选择一个分类属性 String attribute=selectAtrribute(node, deData, flags, attributes, attrIndexMap); // 设置分裂结点的值 node.setElement(attribute); // System.out.println(attribute); if(node == root) { System.out.println("root:" + node.getElement() + ":" + node.getValue()); } else { System.out.println("branch:" + node.getElement() + ":" + node.getValue()); } // 生成和设置各个子结点 int attrIndex=attrIndexMap.get(attribute); LinkedHashSet<String> attrValues=new LinkedHashSet<String>(); for(int i=0; i < deData.length; i++) { if(flags[i] == true) { attrValues.add(deData[i][attrIndex]); } } LinkedHashSet<TreeNode> childs=new LinkedHashSet<TreeNode>(); for(String attrValue : attrValues) { TreeNode tn=new TreeNode(attrValue); childs.add(tn); } node.setChilds(childs); // 在候选分类属性中删除当前属性 attributes.remove(attribute); // 在各个子结点上递归调用本函数 if(childs.isEmpty() != true) { for(TreeNode child : childs) { // 设置子结点待分类的数据集 boolean newFlags[]=new boolean[deData.length]; for(int i=0; i < deData.length; i++) { newFlags[i]=flags[i]; if(deData[i][attrIndex] != child.getValue()) { newFlags[i]=false; } } // 设置子结点待分类的属性集 LinkedHashSet<String> newAttributes=new LinkedHashSet<String>(); for(String attr : attributes) { newAttributes.add(attr); } // 在子结点上递归生成决策树 buildDecisionTree(child, deData, newFlags, newAttributes, attrIndexMap); } } } // 输出决策树 public void printDecisionTree() {} } public class Data2 { public static void main(String[] args) { /* * //输入数据集1 String deData[][] = new String[12][]; deData[0] = new * String[]{"Yes","No","No","Yes","Some","high","No","Yes","French","0~10","Yes"}; deData[1] = * new String[]{"Yes","No","No","Yes","Full","low","No","No","Thai","30~60","No"}; deData[2] = * new String[]{"No","Yes","No","No","Some","low","No","No","Burger","0~10","Yes"}; deData[3] * = new String[]{"Yes","No","Yes","Yes","Full","low","Yes","No","Thai","10~30","Yes"}; * deData[4] = new * String[]{"Yes","No","Yes","No","Full","high","No","Yes","French",">60","No"}; deData[5] = * new String[]{"No","Yes","No","Yes","Some","middle","Yes","Yes","Italian","0~10","Yes"}; * deData[6] = new * String[]{"No","Yes","No","No","None","low","Yes","No","Burger","0~10","No"}; deData[7] = * new String[]{"No","No","No","Yes","Some","middle","Yes","Yes","Thai","0~10","Yes"}; * deData[8] = new * String[]{"No","Yes","Yes","No","Full","low","Yes","No","Burger",">60","No"}; deData[9] = * new String[]{"Yes","Yes","Yes","Yes","Full","high","No","Yes","Italian","10~30","No"}; * deData[10]= new String[]{"No","No","No","No","None","low","No","No","Thai","0~10","No"}; * deData[11]= new * String[]{"Yes","Yes","Yes","Yes","Full","low","No","No","Burger","30~60","Yes"}; //待分类的属性集1 * String attr[] = new String[]{"alt", "bar", "fri", "hun", "pat", "price", "rain", "res", * "type", "est"}; */// 输入数据集2 String deData[][]=new String[14][]; deData[0]=new String[] { "youth", "high", "no", "fair", "no" }; deData[1]=new String[] { "youth", "high", "no", "excellent", "no" }; deData[2]=new String[] { "middle_aged", "high", "no", "fair", "yes" }; deData[3]=new String[] { "senior", "medium", "no", "fair", "yes" }; deData[4]=new String[] { "senior", "low", "yes", "fair", "yes" }; deData[5]=new String[] { "senior", "low", "yes", "excellent", "no" }; deData[6]=new String[] { "middle_aged", "low", "yes", "excellent", "yes" }; deData[7]=new String[] { "youth", "medium", "no", "fair", "no" }; deData[8]=new String[] { "youth", "low", "yes", "fair", "yes" }; deData[9]=new String[] { "senior", "medium", "yes", "fair", "yes" }; deData[10]=new String[] { "youth", "medium", "yes", "excellent", "yes" }; deData[11]=new String[] { "middle_aged", "medium", "no", "excellent", "yes" }; deData[12]=new String[] { "middle_aged", "high", "yes", "fair", "yes" }; deData[13]=new String[] { "senior", "medium", "no", "excellent", "no" }; // 待分类的属性集2 String attr[]=new String[] { "age", "income", "student", "credit_rating" }; LinkedHashSet<String> attributes=new LinkedHashSet<String>(); for(int i=0; i < attr.length; i++) { attributes.add(attr[i]); } // 属性与数据集中对应数据的下标 HashMap<String, Integer> attrIndexMap=new HashMap<String, Integer>(); for(int i=0; i < attr.length; i++) { attrIndexMap.put(attr[i], i); } // 需要分类的数据,初始为整个数据集 boolean flags[]=new boolean[deData.length]; for(int i=0; i < deData.length; i++) { flags[i]=true; } // 构造决策树 TreeNode root=new TreeNode(); DecisionTree decisionTree=new DecisionTree(root); decisionTree.buildDecisionTree(root, deData, flags, attributes, attrIndexMap); } }
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服