收藏 分销(赏)

北师大版数学九年级上册知识点总结.doc

上传人:1587****927 文档编号:1196816 上传时间:2024-04-18 格式:DOC 页数:5 大小:116.33KB
下载 相关 举报
北师大版数学九年级上册知识点总结.doc_第1页
第1页 / 共5页
北师大版数学九年级上册知识点总结.doc_第2页
第2页 / 共5页
北师大版数学九年级上册知识点总结.doc_第3页
第3页 / 共5页
北师大版数学九年级上册知识点总结.doc_第4页
第4页 / 共5页
北师大版数学九年级上册知识点总结.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、九年级上册数学知识点总结 第一章 证明(二)一、全等三角形的判定:SSS 、SAS 、AAS、ASA、HL 二、等腰三角形 1、等腰三角形“三线合一”顶角的平分线、底边上的中线、底边上的高2、等腰三角形:等边对等角,等角对等边。三、等边三角形(1)等边三角形的三个角都相等,并且每个角都等于60。(2)“三线合一”四、直角三角形 1、直角三角形的两个锐角互余2、在直角三角形中,30角所对的直角边等于斜边的一半。3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即5、常用关系式:由三角形面积公式可得:两直角边的积=斜边与斜边上的高的积五、角的平

2、分线及其性质与判定1、角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。2、角的平分线的性质定理:角平分线上的点到这个角的两边的距离相等。定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。(如图1所示,AO=BO=CO)3、角的平分线的判定定理:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。图2OACBDEFACBO图1六、线段垂直平分线的性质与判定1、线段的垂直平分线:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。2、线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。3、定理

3、:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(如图2所示,OD=OE=OF)线段垂直平分线的判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。第二章 一元二次方程一、一元二次方程 1. 一元二次方程定义只含有一个未知数x的整式方程,并且都可以化为(a、b、c为常数,a0)的形式,这样的方程叫做一元二次方程.一元二次方程必须同时满足以下三点; (1)方程是整式方程 (2)它只含有一个未知数(3)未知数的最高次数是2,即化简为ax2+bx+c=0时,a02. 一元二次方程的一般形式,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫

4、做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。二、一元二次方程的解法 1、直接开平方法直接开平方法适用于解形如的一元二次方程。当时,;当b0时,方程没有实数根。2、配方法例:解方程:x2+8x9=0解:移项,得:x2+8x=9配方,得:x2+8x+42=9+42(两边同时加上一次项系数一半的平方)即:(x+4)2=25开平方,得:x+4=5即:x+4=5,或x+4=5所以:x1=1,x2=93、公式法一般地,对于一元二次方程ax2+bx+c=0 (a0),当b24ac0时,它的根是 x=注意:当b24ac0x= 即:x1=9, x2 =24、因式分解法 (1) x

5、2=x(x2) (2)x2+3x+2=0 解:x2x(x2)=0 解:(x+1)(x+2)=0(x2)(1x)=0 x+1=0或x+2=0x2=0或1x=0 x1=-1或x2=-2 x1=2,x2=1 第三章 证明(三)一、平行四边形、菱形、矩形、正方形、等腰梯形的性质及判定:名称性质判定对称性平行四边形1. 对边平行2. 对边相等3. 对角相等4. 邻角互补5. 对角线互相平分1. 两组对边分别平行的四边形是平行四边形2. 两组对边分别相等的四边形是平行四边形3. 一组对边平行且相等的四边形是平行四边形4. 两组对角分别相等的四边形是平行四边形5. 对角线互相平分的四边形是平行四边形中心对称

6、(对称中心:对角线交点)菱形1.具有平行四边形的一切性质2. 四条边相等3. 对角线互相垂直,且每条对角线平分一组对角1. 有一组邻边相等的平行四边形是菱形2. 四条边都相等的四边形是菱形3. 对角线互相垂直的平行四边形是菱形4. 对角线垂直平分的四边形是菱形中心对称(同上)轴对称(2条)矩形1. 具有平行四边形的一切性质2.四个角都是直角3.对角线相等1.有一个角是直角的平行四边形是矩形2.有三个角是直角的四边形是矩形3.对角线相等的平行四边形是矩形4.对角线互相平分且相等的四边形是矩形中心对称(同上)轴对称(2条)正方形1.具有平行四边形、菱形、矩形的一切性质2.四条边都相等3.四个角都是

7、直角4.对角线互相垂直、平分、且相等,且每条对角线平分一组对角(对角线与边的夹角为45)。1.一组邻边相等的矩形是正方形2.对角线相等的矩形是正方形3.有一个角是直角的菱形是正方形4.对角线相等的菱形是正方形5.对角线垂直且相等的平行四边形是正方形6.对角线互相垂直平分且相等的四边形是正方形中心对称(同上)轴对称(4条)等腰梯形1.两腰相等2.同一底上的两个内角相等3.对角线相等1.两腰相等的梯形是等腰梯形2.同一底上的两个内角相等的梯形是等腰梯形3.对角线相等的梯形是等腰梯形轴对称(1条)二、三角形中的中位线1、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。2、三角形中位线定理

8、:三角形的中位线平行于第三边,并且等于它的一半。3、常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。三、有关四边形四边中点问题的知识点:1.顺次连接任意四边形的四边中点所得的四边形是平行四边形;2.顺次连接矩形的四边中点所得的四边形是菱形;3.顺次连接菱形的四边中点所得的四边形是矩形;4.顺次连接等腰梯形的四边中点所得的四边形是菱形;5.顺次连接正方形的四边中点所得的四边形是正方形;结论:1.顺次连接对角线相等的四边形四边中

9、点所得的四边形是菱形;2.顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;3.顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;第四章 视图与投影1、三视图:主视图、左视图、俯视图 长对正、高平其、宽相等1、投影投影:物体在光线的照射下,在地面上或墙壁上留下它的影子,这就是投影现象。平行投影:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。中心投影:探照灯、手电筒、路灯和台灯的光线可以看成是从一点发出的,像这样的光线所形成的投影称为中心投影。2、 视点、视线、盲区第五章 反比例函数1、反比例函数的概念一般地如果两个变量x,y之间的关系可以表示为(k是常

10、数,k0)的形式,那么称y是x的反比例函数。反比例函数三种重要的表达式(1)(为常数,0)(2)(为常数,0)(3)(为常数,0)2、反比例函数中反比例系数的几何意义如图,S矩形OABC= SOAB=3、反比例函数的图像及性质反比例函数()的符号图像取值范围的取值范围是,y的取值范围是的取值范围是,y的取值范围是经过象限两个分支分别在第一、第三象限两个分支分别在第二、第四象限性质(增减性)在每个象限内,y随x的增大而减小。在每个象限内,y随x的增大而增大。4、反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。第六章 频率与概率概率的求法:1、一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m个结果,那么事件A发生的概率为P(A)=2、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。3、树状图法 通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。(当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。) 4、频数与频率第 5 页 共 5 页

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服