1、北师大版初中数学知识点汇总北师大版初中数学知识点汇总九年级九年级(上册上册)班级 姓名 第一章第一章 证明证明(二二)1、三角形全等的性质及判定、三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、2、等腰三角形的判定、性质及推论、等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3、等边三角形的性质及判定定理、等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于 60 度
2、;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有 3 条对称轴。判定定理:有一个角是 60 度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。含 30 度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于 30 度,那么它所对的直角边等于斜边的一半。4、直角三角形、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。(3)直角三角形全等的判定定理定理
3、:斜边和一条直角边对应相等的两个直角三角形全等(HL)5、线段的垂直平分线、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点 A、B 为圆心,以大于 AB 的一半长为半径作弧,两弧交于点 M、N;作直线 MN,则直线 MN 就是线段 AB 的垂直平分线。6、角平分线、角平分线(1)角平分线的性质及判定定理性质:角平分线
4、上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。(2)三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。(3)如何用尺规作图法作出角平分线第二章第二章 一元二次方程一元二次方程只含有一个未知数的整式方程,且都可以化为(a、b、c 为02cbxax常数,a0)的形式,这样的方程叫一元二次方程。把(a、b、c 为常数,a0)称为一元二次方程的一般形式,02cbxaxa 为二次项系数;b 为一次项系数;c 为常数项。解一元二次方程的方法:解一元二次方程的方法:配方法 0)(2 mx配方法解一元二次方程
5、的基本步骤:把方程化成一元二次方程的一般形式;将二次项系数化成 1;把常数项移到方程的右边;两边加上一次项系数的一半的平方;把方程转化成的形式;0)(2 mx两边开方求其根。公式法 (注意在找 abc 时须先把方程化为一般形式)aacbbx242分解因式法 把方程的一边变成 0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)根的判别式:当 b2-4ac0 时,方程有两个不等的实数根;当 b2-4ac=0 时,方程有两个相等的实数根;当 b2-4ac0 时,方程无实数根。根与系数的关系:如果一元二次方程的两根分别为 x1、x2,则02cbxax有:。acxxabxx2
6、121一元二次方程的根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根 x1、x2的对称式的值,特别注意以下公式:2122122212)(xxxxxx21212111xxxxxx 212212214)()(xxxxxx21221214)(|xxxxxx|22)(|)|(|2121221221xxxxxxxx )(3)(21213213231xxxxxxxx 其他能用或表达的代数式。21xx 21xx(3)已知方程的两根 x1、x2,可以构造一元二次方程:0)(21221xxxxxx(4)已知两数 x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程 的
7、根0)(21221xxxxxx在利用方程来解应用题时,主要分为两个步骤:利用方程来解应用题时,主要分为两个步骤:设未知数(在设未知数时,大多数情况只要设问题为 x;但也有时也须根据已知条件及等量关系等诸多方面考虑);寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。处理问题的过程可以进一步概括为:解答检验求解方程抽象分析问题第三章第三章 证明(三)证明(三)平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。平行四边形的判别方法:两组
8、对边分别平行的四边形是平行四边形。两组对边分别相等的四边形是平行四边形。一组对边平行且相等的四边形是平行四边形。两条对角线互相平分的四边形是平行四边形。平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。菱形的定义:一组邻边相等的平行四边形叫做菱形。菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。菱形是轴对称图形,每条对角线所在的直线都是对称轴。菱形的判别方法:一组邻边相等的平行四边形是菱形。对角线互相垂直的平行四边形是菱形。四条边都相等的四边形是菱形。矩形的定义:有一个角是直角
9、的平行四边形叫矩形。矩形是特殊的平行四边形。矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。对角线相等的平行四边形是矩形。四个角都相等的四边形是矩形。推论:直角三角形斜边上的中线等于斜边的一半。正方形的定义:一组邻边相等的矩形叫做正方形。正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。正方形、矩形、菱形和平行边形
10、四者之间的关系(如图 3 所示):梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。两条腰相等的梯形叫做等腰梯形。一条腰和底垂直的梯形叫做直角梯形。等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形。三角形的中位线平行于第三边,并且等于第三边的一半。夹在两条平行线间的平行线段相等。在直角三角形中,斜边上的中线等于斜边的一半平行四边形菱形矩形正方形一组邻边相等一组邻边相等且一个内角为直角(或对角线互相垂直平分)一内角为直角一邻边相等或对角线垂直一个内角为直角(或对角线相等)图 3第四章第四章 视图与投影视图与投影三视图包括:主视图、俯视图和
11、左视图。三视图之间要保持长对正,高平齐,宽相等。一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。主视图:基本可认为从物体正面视得的图象 俯视图:基本可认为从物体上面视得的图象 左视图:基本可认为从物体左面视得的图象视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。太阳光线可以看成平行的光线,像这样的
12、光线所形成的投影称为平行投影。探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。区分平行投影和中心投影:观察光源;观察影子。眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。点在一个平面上的投影仍是一个点;线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度。平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形
13、和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状。第五章第五章 反比例函数反比例函数反比例函数的概念:一般地,(k 为常数,k0)叫做反比例函数,即xky y 是 x 的反比例函数。(x 为自变量,y 为因变量,其中 x 不能为零)反比例函数的等价形式:y 是 x 的反比例函数 )0(kxky 变量 y 与 x 成反比例,比例系数为 k.)0(1kkxy)0(kkxy判断两个变量是否是反比例函数关系有两种方法:按照反比例函数的定义判断;看两个变量的乘积是否为定值。(通常第二种方法更适用)kxy 反比例函数的图象由两条曲线组成,叫做双曲线反比例函数的画法的
14、注意事项反比例函数的图象不是直线,所“两点法”是不能画的;选取的点越多画的图越准确;画图注意其美观性(对称性、延伸特征)。反比例函数性质:当 k0 时,双曲线的两支分别位于一、三象限;在每个象限内,y 随 x 的增大而减小;当 k0 时,双曲线的两支分别位于二、四象限;在每个象限内,y 随 x 的增大而增大;双曲线的两支会无限接近坐标轴(x 轴和 y 轴),但不会与坐标轴相交。反比例函数图象的几何特征:(如图 4 所示)点 P(x,y)在双曲线上都有|21|21|kxySkxySAOBOAPB矩形第六章第六章 频率与概率频率与概率在频率分布表里,落在各小组内的数据的个数叫做频数;每一小组的频数
15、与数据总数的比值叫做这一小组的频率;即:实验次数频数数据总数频数频率在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于 1。因此,各个小长方形的面积的和等于 1。频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。用一件事件发生的频率来估计这一件事件发生的概率。可用列表的方法求出概率,但此方法不太适用较复杂情况。假设布袋内有 m 个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;PBAOPBA O图 4要估算池塘里有多少条鱼,我们可先从池塘里捉上 100 条鱼做记号,再放回池塘,之后再从池塘中捉上 200 条鱼,如果其中有 10 条鱼是有标记的,再设池塘共有 x 条鱼,则可依照估算出鱼的条数。20010100 x生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。