资源描述
高考导数题型分析及解题方法
本知识单元考查题型与方法:
※※与切线相关问题(一设切点,二求导数=斜率=,三代切点入切线、曲线联立方程求解);
※※其它问题(一求导数,二解=0的根—若含字母分类讨论,三列3行n列的表判单调区间和极值。结合以上所得解题。)
特别强调:恒成立问题转化为求新函数的最值。导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。
关注几点:
恒成立:(1)定义域任意x有>k,则>常数k;
(2)定义域任意x有<k,则<常数k
恰成立:(1)对定义域内任意x有恒成立,则
(2)若对定义域内任意x有:恒成立,则
能成立:(1)分别定义在[a,b]和[c,d]上的函数,对任意的存在使得,则
(2)分别定义在[a,b]和[c,d]上的函数,对任意的存在使得,则
一、考纲解读
考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数;
两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等
二、热点题型分析
题型一:利用导数研究函数的极值、最值。
1. 在区间上的最大值是 2
2.已知函数处有极大值,则常数c= 6 ;
3.函数有极小值 -1 ,极大值 3
题型二:利用导数几何意义求切线方程
1.曲线在点处的切线方程是
2.若曲线在P点处的切线平行于直线,则P点的坐标为 (1,0)
3.若曲线的一条切线与直线垂直,则的方程为
4.求下列直线的方程:
(1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线;
解:(1)
所以切线方程为
(2)显然点P(3,5)不在曲线上,所以可设切点为,则①又函数的导数为,
所以过点的切线的斜率为,又切线过、P(3,5)点,所以有②,由①②联立方程组得,,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为
题型三:利用导数研究函数的单调性,极值、最值
1.已知函数的切线方程为y=3x+1
(Ⅰ)若函数处有极值,求的表达式;
(Ⅱ)在(Ⅰ)的条件下,求函数在[-3,1]上的最大值;
(Ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围
解:(1)由
过的切线方程为:
①
②
而过
故
∵ ③
由①②③得 a=2,b=-4,c=5 ∴ (2)
当
又在[-3,1]上最大值是13。
(3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。
依题意在[-2,1]上恒有≥0,即
①当;
②当;
③当
综上所述,参数b的取值范围是
2.已知三次函数在和时取极值,且.
(1) 求函数的表达式; (2) 求函数的单调区间和极值;
(3) 若函数在区间上的值域为,试求、应满足的条件.
解:(1) , 由题意得,是的两个根,解得,.
再由可得.∴. (2) ,
当时,;当时,;当时,;当时,;
当时,.∴函数在区间上是增函数;
在区间上是减函数;在区间上是增函数。函数的极大值是,极小值是. (3) 函数的图象是由的图象向右平移个单位,向上平移4个单位得到的,
所以,函数在区间上的值域为().
而,∴,即. 于是,函数在区间上的值域为.
令得或.由的单调性知,,即.
综上所述,、应满足的条件是:,且.
3.设函数.
(1)若的图象与直线相切,切点横坐标为2,且在处取极值,求实数 的值;
(2)当b=1时,试证明:不论a取何实数,函数总有两个不同的极值点.
解:(1) 由题意,代入上式,解之得:a=1,b=1.
(2)当b=1时, 因故方程有两个不同实根. 不妨设,由可判断的符号如下:
当>0;当<0;当>0
因此是极大值点,是极小值点.,当b=1时,不论a取何实数,函数总有两个不同的极值点。
题型四:利用导数研究函数的图象
1.如右图:是f(x)的导函数, 的图象如右图所示,则f(x)的图象只可能是( D )
(A) (B) (C) (D)
2.函数( A )
x
y
o
4
-4
2
4
-4
2
-2
-2
x
y
o
4
-4
2
4
-4
2
-2
-2
x
y
y
4
o
-4
2
4
-4
2
-2
-2
6
6
6
6
y
x
-4
-2
o
4
2
2
4
3.方程 ( B )
A、0 B、1 C、2 D、3
题型五:利用单调性、极值、最值情况,求参数取值范围
1.设函数
(1)求函数的单调区间、极值.(2)若当时,恒有,试确定a的取值范围.
解:(1)=,令得
列表如下:
x
(-∞,a)
a
(a,3a)
3a
(3a,+∞)
-
0
+
0
-
极小
极大
∴在(a,3a)上单调递增,在(-∞,a)和(3a,+∞)上单调递减
时,,时,
(2)∵,∴对称轴,∴在[a+1,a+2]上单调递减
∴,
依题, 即
解得,又 ∴a的取值范围是
2.已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值(1)求a、b的值与函数f(x)的单调区间(2)若对xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围。
解:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b
由f¢()=,f¢(1)=3+2a+b=0得a=,b=-2
f¢(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:
x
(-¥,-)
-
(-,1)
1
(1,+¥)
f¢(x)
+
0
-
0
+
f(x)
极大值
¯
极小值
所以函数f(x)的递增区间是(-¥,-)与(1,+¥),递减区间是(-,1)
(2)f(x)=x3-x2-2x+c,xÎ〔-1,2〕,当x=-时,f(x)=+c
为极大值,而f(2)=2+c,则f(2)=2+c为最大值。
要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c,解得c<-1或c>2
题型六:利用导数研究方程的根
1.已知平面向量=(,-1). =(,).
(1)若存在不同时为零的实数k和t,使=+(t2-3),=-k+t,⊥,
试求函数关系式k=f(t) ;
(2) 据(1)的结论,讨论关于t的方程f(t)-k=0的解的情况.
解:(1)∵⊥,∴=0 即[+(t2-3) ]·(-k+t)=0.
整理后得-k+[t-k(t2-3)] + (t2-3)·=0
∵=0,=4,=1,∴上式化为-4k+t(t2-3)=0,即k=t(t2-3)
(2)讨论方程t(t2-3)-k=0的解的情况,可以看作曲线f(t)= t(t2-3)与直线y=k的交点个数.
于是f′(t)= (t2-1)= (t+1)(t-1).
令f′(t)=0,解得t1=-1,t2=1.当t变化时,f′(t)、f(t)的变化情况如下表:
t
(-∞,-1)
-1
(-1,1)
1
(1,+ ∞)
f′(t)
+
0
-
0
+
F(t)
↗
极大值
↘
极小值
↗
当t=-1时,f(t)有极大值,f(t)极大值=.
当t=1时,f(t)有极小值,f(t)极小值=-
函数f(t)=t(t2-3)的图象如图13-2-1所示,
可观察出:
(1)当k>或k<-时,方程f(t)-k=0有且只有一解;
(2)当k=或k=-时,方程f(t)-k=0有两解;
(3) 当-<k<时,方程f(t)-k=0有三解.
题型七:导数与不等式的综合
1.设在上是单调函数.
(1)求实数的取值范围;(2)设≥1,≥1,且,求证:.
解:(1) 若在上是单调递减函数,则须这样的实数a不存在.故在上不可能是单调递减函数.
若在上是单调递增函数,则≤,
由于.从而0<a≤3.
(2)方法1、可知在上只能为单调增函数. 若1≤,则 若1≤矛盾,故只有成立.
方法2:设,两式相减得 ≥1,u≥1,
,
2.已知为实数,函数(1)若函数的图象上有与轴平行的切线,求的取值范围(2)若,(Ⅰ)求函数的单调区间
(Ⅱ)证明对任意的,不等式恒成立
解:,
函数的图象有与轴平行的切线,有实数解
,,所以的取值范围是
,,,
由或;由
的单调递增区间是;单调减区间为
易知的最大值为,的极小值为,又
在上的最大值,最小值
对任意,恒有
题型八:导数在实际中的应用
1.请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?
解:设OO1为,则
由题设可得正六棱锥底面边长为:,(单位:)
故底面正六边形的面积为:=,(单位:)
帐篷的体积为:(单位:)
求导得。令,解得(不合题意,舍去),,
当时,,为增函数;当时,,为减函数。
∴当时,最大。
答:当OO1为时,帐篷的体积最大,最大体积为。
2.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:
已知甲、乙两地相距100千米。
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
解:(I)当时,汽车从甲地到乙地行驶了小时,
要耗没(升)。
(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,
依题意得
令得
当时,是减函数; 当时,是增函数。
当时,取到极小值 因为在上只有一个极值,所以它是最小值。
答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。
题型九:导数与向量的结合
1.设平面向量若存在不同时为零的两个实数s、t及实数k,使
(1)求函数关系式;(2)若函数在上是单调函数,求k的取值范围。
解:(1)
(2)
则在上有由;
由。
因为在t∈上是增函数,所以不存在k,使在上恒成立。故k的取值范围是。
第 9 页 共 9 页
展开阅读全文