资源描述
目 录
第一章 污水厂课程设计指导与原始资料……………………………3
一、设计任务…………………………………………………………3
二、设计原始资料……………………………………………………4
第二章 污水处理厂设计规模的确定…………………………………5
一、污水水量的确定…………………………………………………5
二、污水厂设计规模的确定…………………………………………6
第三章 污水厂处理工艺选择…………………………………………6
一、污水处理厂工艺流程方案………………………………………6
二、方案的技术经济比较……………………………………………8
第四章 污水处理构筑物设计计算…………………………………11
一、泵前中格栅……………………………………………………11
二、污水提升泵房…………………………………………………13
三、泵后细格栅……………………………………………………14
四、平流沉砂池……………………………………………………16
五、厌氧池…………………………………………………………19
六、氧化沟…………………………………………………………20
七、辐流式二沉池…………………………………………………26
八、紫外消毒间……………………………………………………28
第五章 污泥处理构筑物设计计算…………………………………30
一、污泥浓缩池……………………………………………………31
二、贮泥池…………………………………………………………34
三、污泥脱水………………………………………………………34
第六章 平面布置与高程布置………………………………………35
一、污水处理厂的平面布置………………………………………35
二、污水处理厂的高程布置………………………………………38
第七章 污水厂工程概预算…………………………………………42
参考文献………………………………………………………………48
第一章 污水厂课程设计指导与原始资料
一、设计任务
某市(区)“污水厂课程设计”。
1. 设计题目:某污水厂课程设计
2. 设计地点:本院
3. 时间:一周(方案选择、构筑物计算在平时完成,说明书和图纸在设计周完成)
4. 完成任务:
4.1 确定污水厂建设规模、位置,并进行方案论证;
4.2 污水厂工艺方案确定及可行性研究(进行二种方案比较);
4.3 污水厂工艺设计计算,完成水厂平面布置图、高程图,单体构筑物工艺计算;
4.4 设计计算说明书1份;
5. 要求:
5.1 完成图纸2张以上,单体构筑物不作要求,可在平时选做;
5.2 设计计算说明书30页以上,附计算图表、可行性研究之方案论证;
5.3 污水厂工艺设计计算并附草图。
5.4 水厂平面图、高程图选一张手工图(白纸铅笔图);
5.5 设计计算说明书采用统一封面;
二、设计原始资料
1. 城市污水水量(根据用水量测算)
人口数量
生活用水量标准
三产用水占生活用水比例
工业用水占生活用水比例
某工厂集中用水量
(人)
(l/d.r)
(%)
(%)
(m3/d)
48000
220
91
200
8000
21000
200
80
150
3000
工业用水排水符合城市污水管网接纳要求,城市污水水质见下表。
2. 城市污水原水水质情况
序号
名称
最高数
平均数
备注
1
SS
250
220
2
pH值
7.2
7.1
3
氨氮
25
20
4
BOD5
200
175
5
COD
410
380
6
TN
38
34
7
TP
6.2
4.2
出水水质要求:
根据一级A标准确定
50 10 10
15 0.5
第二章 污水处理厂设计规模的确定
一、污水水量的确定
在人类的生活和生产中,使用着大量的水。水在使用的过程中受到不同程度的污染,改变了原有的化学成分和物理性质,这些水称为污水或废水。污水也包括雨水及冰雪融化水。污水按来源的不同,分为生活污水、工业废水和降水三类。根据设计任务书的设计需要采用分流制,不考虑雨污合建的情况,污水厂的设计规模按污水量和工业废水量来确定。
1. 生活污水量的确定
根据设计任务书,设计地区城市人口数N = 48000人,设计人均用水量q = 220 L/cap·d
生活污水量的确定以城市人口数,污水量标准或用水标准乘系数一般取k = 0.8左右,即生活污水量
= k·N·q = 0.8×21000×200 L/d = 8448000L/d = 8448
2. 第三产业废水量的确定
= 21000×200×80% = 9609
3. 工业废水量的确定
= 21000×200×150% = 21120
4. 集中流量Q集中的确定
根据设计任务书查得Q集中=8000
5. 设计最高日污水量Qd的确定
污水厂规模:Qd= (+++Q集中)
=(8448+9609+21120+8000)
=47717
=0.54
设计秒流量:= 0.54×1.3 = 0.7
Qh = 2520m/h
二、污水厂设计规模的确定
应满足设计地区最高日污水量Qd和设计地区最高日最高时污水量Qh这样才能真正达到设计污水处理厂的设计处理要求,才能保证污水厂的处理负荷在设计处理负荷之内,保证污水厂的高效处理能力,保证污水厂的安全运行能力,达到污水处理厂设计要求。所以,污水厂设计规模为
Qmax = 2520m/h = 0.7
第三章 污水处理厂工艺流程方案的选择
一、污水处理厂工艺流程方案选择
污水处理厂的工艺流程系指保证处理水达到所要求的处理程度的前提下,采用的污水处理技术各单元的有机组合。
在选定处理工艺流程的同时,还需要考虑确定各技术单元构筑物的型式,两者互为制约,互为影响。污水处理工艺流程选定,主要以下列各项因素作为依据。
1. 污水的处理程度
根据处理水的出路和污水的水质,确定污水中各种污染物的处理程度。
污水的处理程度如下表1
表3-1 污水各种污染物的处理程度
项目
BOD5(mg/l)
COD(mg/l)
SS(mg/l)
TN(mg/l)
TP(mg/l)
进水
200
410
250
38
6.2
出水
10
50
10
15
0.5
去除率
95%
87.8%
96%
60.5%
91.9%
2. 污水水质和水量的变化情况
除水质外,原污水的水量也是选定处理工艺需要考虑的因素,水质、水量变化较大的污水,应选用承受冲击负荷能力较强的处理工艺。
3. 工程造价和运行费用
在处理水应达到的水质标准的前提条件,工程造价与运行费用越低越好。以处理系统最低的总造价和运行费用为目标函数,建立二者之间的相互关系,达到最大经济比。
4. 当地的各项条件
当地的地形、气候等自然条件也对污水处理工艺流程的选定具有一定的影响。当地的原材料与电力供应等具体问题,也是选定处理工
中格栅
污水提升泵房
细格栅
脱水机房
浓缩池
贮泥池
二沉池
氧化沟
厌氧池
沉砂池
接触池
排大运河
泥饼外运
污水
污泥回流
剩余污泥
图3-2 厌氧池+氧化沟处理工艺
1. 技术比较:
两方案的技术比较见下表2。总的来说,这两个方案都比较好,都能达到要求处理的效果,而且工艺简单,污泥处理的难度较小,在技术上都是可行的。
表3-2 城市污水处理厂工艺流程方案比较
方案一
(A2/O法处理工艺)
方案二
(厌氧池+氧化沟处理工艺)
优点:
(1)工艺为最简单的同步脱氮除磷工艺,总的水力停留时间、总的占地面积少于其他同类工艺。
(2)在厌氧(缺氧)好氧交替运行条件下,丝状菌得不到大量繁殖,不会污泥膨胀,SVI值一般均小于100。
(3)污泥中含磷浓度高,具有很高肥效。
(4)运行中勿需投药,两个A段只用轻缓搅拌,以不增加溶解氧浓度,运行费用低。
缺点:
(1)除磷效果难于再行提高,污泥增长有一定的限度,不易提高,特别是当P/BOD值高时更是如此。
(2)脱氮效果也难于进一步提高,内循环量一般以2Q为限,不宜太高,否则增加运行费用。
(3)对沉淀池要保持一定浓度的溶解氧,减少停留时间,防止产生厌氧状态和污泥释放磷的现象出现,但溶解氧浓度也不宜过高,以防止循环混合液对缺氧反应器的干扰。
优点:
(1)氧化沟具有独特的水力流动特点,有利于活性污泥的生物凝聚作用,而且可以将其工作区分为富氧区、缺氧区,用以进行硝化和反硝化作用,取得脱氮的效果。
(2)不使用初沉池,有机性悬浮物在氧化沟内能达到好氧稳定的程度。
(3)BOD负荷低,类同于活性污泥法的延时曝气系统。使氧化沟具有:对水温、水质、水量的变动有较强的适应性;污泥龄一般在18-20d左右,为传统活性污泥系统的3-6倍,可以存活,繁殖世代时间长、增殖速度慢的微生物。硝化菌在氧化沟中能产生硝化反应,如运行得当,氧化沟能够具有较高的脱氮效果;污泥产率低,且多已达到稳定的程度,勿需再进行消化处理。
(4)脱氮效果还能进一步提高。
(5)氧化沟只有曝气器和池中的推进器维持沟内的正常运行,电耗较小,运行费用更低。
缺点:氧化沟的占地面积很大。
2. 经济比较:经比较,第二套方案费用较少。
3. 比较结果:选择方案二,即“厌氧池+氧化沟”处理工艺
该流程包括完整的二级处理系统和污泥处理系统。污水经过一级处理的隔栅、沉砂池和初沉池进入二级处理的构筑物厌氧池和氧化沟,然后在二次沉淀池中进行泥水分离,二沉池出水消毒后直接排放。二沉池的污泥部分回流到厌氧池中,剩下的进入浓缩池进行浓缩,浓缩后进入贮泥池,最后送入到脱水机房脱水后外运泥饼。
第四章 污水处理工艺构筑物的设计计算
一、泵前中格栅
1. 设计参数
设计流量Q = 0.7m3/s
栅前流速v1 = 0.7m/s,过栅流速v2 = 0.9m/s
栅条宽度s = 0.01m,格栅间隙b = 21mm(中格栅)
栅前部分长度0.5m,格栅倾角α = 60°
取栅前槽宽B1 = 1.0m
单位栅渣量ω1 = 0.07m3栅渣/103 m3污水
2. 设计计算
取用2组格栅,Q1 = Q/2 = 0.7/2 = 0.35 m3/s
(1)栅前水深 h=Q1/(B1×v1)=0.35/(1×0.7)=0.5m
(2)栅条间隙数
(取n = 35)
(3)栅槽有效宽度
B = s×(n-1) + b×n + 0.2
= 0.01×(35-1) + 0.021×35 + 0.2 = 1.28m
(4)进水渠道渐宽部分长度
(其中α1为进水渠展开角)
(5)栅槽与出水渠道连接处的渐窄部分长度
(6)过栅水头损失(h1)
因栅条边为矩形截面,取k=3,则
取0.1m
其中,ε=β(s/b)4/3
ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42
h0:计算水头损失
k:格栅受污物堵塞后,水头损失增加倍数,取k=3
(7)栅后槽总高度(H)
取栅前渠道超高h2 = 0.3m,则栅前槽总高度
H1 = h + h2 = 0.4 + 0.3 = 0.7m
栅后槽总高度
H = h + h1 + h2 = 0.4 + 0.097 + 0.3 = 0.797m (取0.8m)
(8)格栅总长度
L = L1 + L2 + 0.5 + 1.0 + 0.7/tanα
= 0.38 + 0.19 + 0.5 + 1.0 + 0.7/tan60°= 2.47m
(9)每日栅渣量
在21格栅间距的情况下,取,每日栅渣量:
=0.7×0.07×86400/1000kz=4.23m3/d
宜采用机械格栅清渣
二、污水提升泵房
本设计采用半地下合建式泵房,它具有布置紧凑、占地少、结构节省的特点。泵站地下埋深为4.8m,水泵采用潜污泵。
1. 设计流量
根据规定排水泵站的设计流量一般均按最高日最高时污水流量决定,Qs = 0.7m3/s
2. 集水间计算
选择下面水池和上面机器间式合建式的方形泵站
(1)集水间的容积:采用相当于1台泵5分钟的容量。
W = 504/60 ×5 = 42 m3
(2)集水池面积
有效水深采用H = 3.0m,则集水池面积为F = 42/3 = 14 m2
泵房尺寸为5×10 m
3. 水泵扬程
(1)提升净扬程Z =提升后最高水位-泵站吸水池最低水位:
Z = 2.83 - (-4.8) = 7.63m
(2)出水管线的水头损失约0.2m
(3)泵站内的管线水头损失假设为1.5m,考虑自由水头为0.5m。
(4)水泵总扬程为:
H = 7.63 + 0.2 + 1.5 + 0.5 = 9.83m 取10m。
4. 选泵
由Q=700L/s,H=10m,可查手册得:选用20sh-28型潜水排污泵,其各项性能如下:
表4-1 选泵各项性能参数
型号
流量
(m3/h)
扬程
(m)
转速
(r/min)
电动机功率
(kW)
效率
(%)
出口管径(mm)
重量(kg)
20sh-28
12
745
160
86.05
500
3214
三、泵后细格栅
1. 设计参数:
设计流量Q = 0.7 m3/s
栅前流速v1 = 0.7m/s,过栅流速v2 = 0.9m/s
栅条宽度s = 0.01m,格栅间隙b = 11mm
栅前部分长度0.5m,格栅倾角α= 60°
取栅前槽宽B1 = 1.0m
单位栅渣量ω1 = 0.12m3栅渣/103m3污水
2. 设计计算
取用2组格栅,Q1 = Q/2 = 0.7/2 = 0.35 m3/s
(1)栅前水深h = Q1/(B1×v1) = 0.35/(1×0.7) = 0.5m
(2)栅条间隙数
(取n=66)
(3)栅槽有效宽度
B = s×(n-1) + b×n + 0.2
= 0.01×(66-1) + 0.021×66 + 0.2 = 1.58m
(4)进水渠道渐宽部分长度
(其中α1为进水渠展开角)
(5)栅槽与出水渠道连接处的渐窄部分长度
(6)过栅水头损失(h1)
因栅条边为矩形截面,取k=3,则
其中,ε=β(s/b)4/3
ε:阻力系数,与栅条断面形状有关,当为矩形断面时β= 2.42
h0:计算水头损失
k:格栅受污物堵塞后,水头损失增加倍数,取k=3
(7)栅后槽总高度(H)
取栅前渠道超高h2 = 0.3m,
则栅前槽总高度H1 = h+h2 = 0.5+0.3 = 0.8m
栅后槽总高度H = h+h1+h2 = 0.5+0.23+0.3 = 1.03m
(8)格栅总长度L = L1+L2+0.5+1.0+0.84/tanα
=0.8+0.4+0.5+1.0+0.84/tan60°
=3.18m
(9)每日栅渣量W = QW1/Kz = 0.7×86400×0.12/1000Kz
=5.58m3/d
所以宜采用机械格栅清渣
四、平流式沉砂池
沉砂池的原理是利用物理原理去除污水中密度较大的污迹颗粒污染物,如泥砂,煤渣等。本设计采用平流式沉砂池,具有处理效果好,结构简单的优点。沉砂池按去除相对密度大于2.65、粒径大于0.2mm的砂粒设计。污水自流进入,因此按最大设计流量计算。
1. 设计参数
设计流量:Q = 0.7m3/s(设计1组,分为2格)
设计流速:v = 0.25m/s
水力停留时间:t = 30s
2. 设计计算
(1)沉砂池长度:
L = vt = 0.25×30 = 7.5m
(2)水流断面积:
A = Q/v = 0.35/0.25 = 1.4m2
图4-1 沉砂池计算草图
(3)池总宽度:
设计n=2格,每格宽取b =1.6m>0.6m,池总宽B = 2b = 3.2m
(4)有效水深:
h2 = A/B = 1.4/1.6 = 0.875m (介于0.25-1m之间)
(5)贮泥区所需容积:
设计T=2d,即考虑排泥间隔天数为2天,则沉砂斗容积:
其中X1:城市污水沉砂量30m3/106m3
K:污水流量总变化系数1.3
每格沉砂池设两个沉砂斗,两格共有四个沉砂斗, 则每个沉砂斗容积
V1 = V/4 = 1.36/4 = 0.36 m3
(6)沉砂斗各部分尺寸及容积:
设计斗底宽a1=0.5m,斗壁与水平面的倾角为55°,斗高h3’=0.6m,则沉砂斗上口宽:
沉砂斗容积:
(略大于V1=0.36m3,符合要求)
(7)沉砂池高度:
采用重力排砂,设计池底坡度为0.06,坡向沉砂斗长度为
则沉泥区高度为
h3 = h3’+0.06L2 = 0.6+0.06×2.45 = 0.747m
池总高度H :设超高h1=0.3m,
H = h1+h2+h3 = 0.3+0.875+0.747 = 1.922m
(8)进水渐宽部分长度:
(9)出水渐窄部分长度:
L3 = L1 = 0.55m
(10)校核最小流量时的流速:(最小流量即平均日流量)
Q平均日 = Qmax/Kz = 0.7/1.3 = 0.51 m3/s
则Vmin= Q平均日/A=0.51/2.8=0.181>0.15m/s,符合要求
(11)砂水分离器的选择
沉砂池的沉砂经排砂装置排除的同时,往往是砂水混合体,为了进一步分离出砂和水,需配套砂水分离器。
清除沉砂的时间间隔为2d,根据该工程的排砂量,选用一台螺旋砂水分离器。设备的主要性能参数为:进入砂水分离器的流量为1-3L/s;容积为0.6 m;进水管直径为100mm;出水管直径为100mm;配套功率为0.25KW。
五、厌氧池
1. 设计参数
设计流量: Q = 47717 m3/d
分2座,每座设计流量为Q1 = 23858 m3/d
水力停留时间:T = 2.5h
污泥浓度:X = 3000mg/L
污泥回流液浓度:Xr = 10000mg/L
2.设计计算
(1)厌氧池容积:
V= Q1*T=23858×2.5/24=2485.5m3
(2)厌氧池尺寸:
水深取为h = 4.0m。则厌氧池面积:
A = V/h = 2485.5/4 = 621m2
厌氧池直径:
m (取D=28.2m)
考虑0.3m的超高,故池总高为H = h+0.3 = 4+0.3 = 4.3m。
(3)污泥回流量计算:
回流比计算
R = X/(Xr-X) = 3/(10-3) = 0.42
污泥回流量
QR = RQ1 = 0.42×23858×2 = 20040 m3/d = 417.5m3/h
六、氧化沟
采用卡罗塞尔氧化沟,该工艺就有投资省、处理效率高、可靠性好、管理方便和运行维护费用低等优点。其BOD去除率可达95%以上,脱氮效果可达90%以上,除磷率在50%左右。
卡罗塞尔氧化沟是一个多沟串联的系统,进水与活性污泥混合后再沟内做不停的循环运动。卡罗塞尔氧化沟采用垂直安装的低速表面曝气器,每组沟渠安装二个,均安装在同一端,因此形成了靠近曝气器下游的富氧区和曝气器上游以及外环的缺氧区。
1. 设计参数
进水BOD5:S0=200mg/l 出水BOD5:Se=10mg/l
进水NH3-N:25mg/l 出水NH3-N:5mg/l
氧化沟设计为两组,氧化沟按最大日平均时流量设计,每个氧化沟设计流量为Q = 23858m3/d。
选择混合液污泥浓度MLSS = 4000mg/l,f = MLVSS/MLSS = 0.7,溶解氧浓度C = 2mg/l。
总污泥龄:θc=30d;
设计温度:T = 13.9℃;NOD = 4.6mgO2/mgNH3-N氧化,可利用氧2.6mgO2/NO3-N还原
α= 0.9 β= 0.98
脱氮速率:qdn = 0.0312 kgNO-3-N/(kgMLVSS*d)
k1 = 0.23 l/d
k02 = 1.3mg/L
剩余碱度100mg/L(保持PH≥7.2):
所需碱度7.1mg碱度/mgNH3-N氧化;
产生碱度3.0mg碱度/mgNO3-N还原
硝化安全系数:2.5
脱硝温度修正系数:1
2. 设计计算
(1)碱度平衡计算:
1)设计的出水BOD5为10 mg/L,
则出水中溶解性BOD5=10-0.7×10×1.42×(1-e-0.23*5)=3.2mg/L
2)采用污泥龄30d,则日产泥量为:
kg/d
式中 Q —每座氧化沟设计流量 m3/d;
a —污泥增长系数,一般为0.5-0.7 ,这里取0.6 kg/kg ;
b —污泥自身氧化率,一般为0.04-0.1 ,这里取0.05 1/d ;
Lr —(L0 - Le) 去除的BOD5 浓度 mg/L ;
tm —污泥龄 d ;
Lo —进水BOD5浓度 mg/L ;
Le —出水溶解性BOD5 浓度 mg/L
设其中有12.5%为氮,近似等于TKN中用于合成部分为:
0.125×1127=141.0kg/d
即:TKN中有mg/L用于合成。
需用于氧化的NH3-N = 25-5.91-2 = 17.09mg/L
需用于还原的NO3-N = 17.09-5 = 12.09 mg/L
(2)硝化区容积计算:
硝化速率为
=0.282 d-1
故泥龄:
采用安全系数为2.5,故设计污泥龄为:2.5×3.55 = 8.9d
原假定污泥龄为30d,则硝化速率为:
单位基质利用率:
kgBOD5/kgMLVSS.d
MLVSS = f×MLSS = 0.74000 = 2800 mg/L
所需的MLVSS总量=
硝化容积:
水力停留时间:
(3)反硝化区容积:
12℃时,反硝化速率为:
qdn = qdn(20)×1.08(t-20)
= 0.035×1.08(13.9-20)
= 0.022 kgNO3-N/kgMLVSS.d
还原NO3-N的总量 =kg/d
脱氮所需 kg
脱氮所需池容: m3
水力停留时间:h
(4)氧化沟的总容积: m3
总水力停留时间:
(5)氧化沟的尺寸:
氧化沟采用改良式的carrousel 4廊道式
取池深5.5m,超高1m,中间分隔墙厚度为0.25m
单沟宽度b=9m
氧化沟面积为:A = V/h = 14358/5.5 = 2610 m2
沟总的长度为:12179/(5.5*9)=246m,
其中好氧段的长度为 172.2m,缺氧段的长度为73.8m,
弯道长度为: 3×π×4.5+π×18 = 98.91m
直道长度:(246-98.91)/4 = 36.77
(6)需氧量计算:
采用如下经验公式计算:
其中:第一项为活性污泥消化需氧量,第二项为活性污泥内源呼吸需氧量,第三项为硝化污泥需氧量,第四项为反硝化污泥需氧量。
经验系数:A=0.5 B=0.1
需要硝化的氧量:
Nr = 19.0923858 10-3 = 455.45kg/d
R = 0.523858(0.2-0.0032)+0.191632.8+4.6455.45
-2.6185.8
=6525.3kg/d=272kg/h
取T=30℃,查表得α=0.8,β=0.9,
氧的饱和度=7.63 mg/L,=10.37mg/L
采用表面机械曝气时,13.9℃时脱氧清水的充氧量为:
查手册,选用DY335型倒伞型叶轮表面曝气机,直径Ф=3.7m,电机功率N=55kW,单台每小时最大充氧能力为200kgO2/h,每座氧化沟所需数量为n,则 n= 494.8/200 = 2.47, 取n=3台
(7)回流污泥量:
式中:X = MLSS = 4g/L,回流污泥浓度Xr取10g/L。则:
(50%~100%,实际取70%)
考虑到回流至厌氧池的污泥为15%,则回流到氧化沟的污泥总量为55%Q。
(8)剩余污泥量:
Q = 1127×2/0.7+(200-10) ×0.25×23858/1000 = 4353.3kg/d
如果污泥由底部排除,且二沉池的排泥浓度为10g/l,则
每个氧化沟的产泥量为4353.3/10 = 435.3m3/d
(9)设计采用的曝气机选用型号为DS325的可调速的倒伞型叶轮曝气机五台,该种机子的技术参数如下所示:
叶轮的直径为3250 mm,
电动机额定功率为55 kw,
电动机转速:33 r/min,
充气量:21-107 kg/h,
设备重量:4400 kg
七、辐流式二沉池
该沉淀池采用中心进水,周边出水的幅流式沉淀池二座,采用刮泥机。
图4-2 辐流式沉淀池
图4-3 幅流式沉淀池计算草图
1. 设计参数
设计进水量:Q = 47716/24 = 1988m3/h
沉淀池二座,每组q = 994m3/h
表面负荷:qb范围为1.0-1.5 m3/ m2.h ,取1 m3/ m2.h
固体负荷:qs = 140 kg/ m2.d
水力停留时间(沉淀时间):T=2.5 h
堰负荷:取值范围为1.5-2.9L/s.m,取2.0 L/(s.m)
2. 设计计算
(1)沉淀池面积:
按表面负荷算:
(2)沉淀池直径:,取36m
沉淀时间取t = 2.5h
有效水深为 h2 = qbT=1.02.5 = 2.5m
(3)贮泥斗容积:
为了防止磷在池中发生厌氧释放,故贮泥时间采用Tw=2.5h,二沉池污泥区所需存泥容积:
则污泥区高度为
,取2.4m
(4)二沉池总高度:
取二沉池缓冲层高度h3 = 0.4m,超高为h1 = 0.3m
则池边总高度为
h = h1+h2+h3+h4 = 0.3+2.5+2.4+0.4 = 5.6m
设池底度为i=0.05,则池底坡度降为
泥斗的高度设为h6=0.5m
则池中心总深度为
H = h+h5+h6 = 5.6+0.85+0.5 = 6.95m
八、紫外线消毒间
城市污水经处理后,水质已经改善细菌含量也大幅度减少,但其绝对值仍很客观,并有存在病原菌的可能。因此,污水排放水体前应进行消毒。本设计采用紫外线消毒,消毒效率高,占地面积小。
1. 设计参数
(1)依据加拿大TROJAN公司生产的紫外线消毒系统的主要参数,用设备型号UV4000PLUS
(2)辐射时间:10-100 s
2. 设计计算:
(1)灯管数:
UV4000PLUS紫外线消毒设备每3800m3/d需要2.5根灯管,每根灯管的功率为2800w。
(2)平均日流量时:
n = 47716/3800×2.5= 23
选用6根灯管为一个模块,则模块数N=4,则共有灯管24根。
(3)消毒渠设计
按设备要求渠道深度为129cm,设渠中水流速度为0.3m/s。
渠道过水断面积:
A = 47716/0.3×24×3600 = 1.34
渠道宽度:
,取1.1m
若灯管间距为8.89cm,沿渠道宽度可安装12根灯管,故选用UVP4000PLUS系统,两个灯组,一个UV灯组2个模块。
渠道长度:
每个模块长度2.46m,本设计为便于施工取2.5m。
渠道出水堰板调节,调节堰到灯组间距1.5m,进水口到灯组间距1.5m,两灯组间距1.0m,
则渠道总长L为:L = 2.5×2+1.5+1.5+1.0 = 9m
校核辐射时间:(符合要求)
污水经上述工艺构筑物处理后,所有指标达到一级A排放标准后可以排入大运河。到此污水厂污水处理结束。
第五章 污泥处理工艺构筑物的设计计算
污水处理构成中产生的污泥,除无机惰性物质外,还还有较多的有机物,有机物颗粒较细,含有病原菌和寄生虫卵,易腐化发臭,若不处理,直接排入自然环境中,将造成二次污染,故必须进行污泥处理。污泥处理的主要目的有:
(1)减少有机物,使污泥稳定化
(2)减少污泥体积,降低污泥后续处置费用
(3)减少污泥中有毒物质
(4)利用污泥中可用物质,化害为利
(5)选用可以除磷的工艺,尽量避免磷的二次污染
本设计主要进行污泥的减量处理。污泥处理方案的工艺流程如下:
图5-1 污泥处理工艺流程
剩余污泥量的计算(单座计算)
由前面的计算可得,
则,氧化沟每天排出的实际剩余污泥量为
其中,Xr为回流污泥浓度,取10000mg/L。
一、污泥浓缩池
采用两座幅流式圆形重力连续式污泥浓缩池,用带栅条的刮泥机刮泥,采用静压排泥。
1. 设计参数
进泥浓度:10g/L
污泥含水率P1=99.4%
设计浓缩后含水率P2=97.0%
污泥固体负荷:qs = 45kgSS/(m2.d)
污泥浓缩时间:T=13h
贮泥时间:t=4h
2. 设计计算
图5-2重力连续式污泥浓缩池计算草图
(1)浓缩池池体计算:
每座浓缩池所需表面积
浓缩池直径
(2)浓缩池工作部分高度h1
取污泥浓缩时间T=13h,则
(3)浓缩池有效容积
V1 = A×h2 = 96.74×3.92 = 379.22m3
(4)排泥量与存泥容积:
浓缩后排出含水率P2=97.0%的污泥,则
按4h贮泥时间计泥量,则贮泥区所需容积
V2 = 4*Qw′= 42.15 = 8.6m3
式中:h3--泥斗的垂直高度,取1.5m
r1--泥斗的上口半径,取1.2m
r2--泥斗的下口半径,取0.7m
设池底坡度为0.08,池底坡降为:
h4=
故池底可贮泥容积:
因此,总贮泥容积为
(满足要求)
(5)浓缩池总高度:
浓缩池的超高h1取0.30m,缓冲层高度h5取0.30m,
则浓缩池的总高度H为
= 0.30+2.71+1.5+0.228+0.3 = 5.04m
(6)浓缩池排水量:
Q = Q2-Qw′= 258.2-51.64 = 206.6m3
二.贮泥池
1. 设计参数
进泥量:经浓缩排出含水率P2=97%的污泥有:
2Qw′= 251.64 =103.3m3/d,设贮泥池1座,贮泥时间T=12h
2. 设计计算
池容为
V=2Qw′T=103.30.5=51.64m3
贮泥池尺寸(将贮泥池设计为长方形)
LBH = 434.5m 有效容积V = 54m3
三.污泥脱水机房
(1)污泥脱水间的布置
污泥脱水机房包括机械间、药剂贮存间、值班控制室。机械间包括脱水机、皮带输送机、泥浆泵、污泥搅拌机、储泥罐等。药剂贮存间存污泥脱水前预处理所需要的药剂。
该污泥脱水设备采用带式压滤机。
(2)压滤机台数
采用2台带式压滤机,每台处理污泥量为:
Q = 103.3/2 = 51.65m3/d = 2.15m3/h
设计选用带宽为800mm的滚压带式压滤机2台,二台轮流使用。(3)附属设备
1)污泥投配设备
选用2台单螺杆污泥投配泵,与2台滚压带式压滤机一一对应。每台投配泵的流量为:
Q =103.3m3/d=2.15m3/h
2)加药系统
用滚压带式压滤机脱水的污泥,化学调剂为有机合成的高分子混凝剂。设计选用聚丙烯酰胺。
3)反冲洗水泵
根据滚压带式压滤机带宽和运行速度,每台脱水机反冲洗耗水量为10-12 m3/h,反冲洗水压不小于0.5MPa。选用2台离心清水泵,一用一备。
污泥经脱水干化后,变为泥饼由卡车运送至垃圾填埋厂进行填埋。到此污水厂污泥处理结束。
第六章 污水处理厂平面布置与高程布置
一、污水处理厂的平面布置
在污水处理厂厂区内有:各种处理单元构筑物;连通各处处理构筑物之间的管、渠及其他管线;辅助性建筑物;道路及绿地等。现就在进行处理厂厂区平面规划,布置时,应考虑的一般原则阐述于下:
1. 各种单元构筑物的平面布置
处理构筑物是污水厂的主体建筑物,在作平面布置时,应根据各构筑物的功能要求和水力要求,结合地形和地质条件,确定它们在厂区内平面的位置,对此,应考虑:
(1)污水厂的总平面图一般都分区布置,主要有生活区、污水处理区、污泥处理区和远期预留地等。各区之间以道路相隔,生活区一般布置夏季主风向的上风向。污泥区一般布置在夏季主风的下风向。
(2)处理构筑物的布置应紧凑,节约用地并便于管理。
(3)在处理构筑物之间,应保持一定的距离,以保证敷设连接管、渠的要求,一般的间距可取5-10m,某些有特殊要求的构筑物,其间距应按有关规定确定。
2. 管(渠)道的平面布置
(1)连接各处理构筑物的管线(渠)要通畅,尽可能地按流程顺序布置,以避免管线迂回,同时应充分利用地形,以减少土方量。
(2)污水厂内管线种类很多,应综合考虑才布置,以免发生矛盾。管(渠)道布置应该紧凑、整齐,也应该考虑才施工、安装及维护的要求,保持适当的距离。
(3)在厂区内还设有承压管如给水管、以及输配电线路(本设计中未画出)。这些管线可考虑平行架空布置,以节省用地和便于维护,地下埋设的管道可尽量集中并设管廊或管沟。
(4)污水和污泥管道应尽可能考虑重力自流。各种管道的敷设应按工业管道安装要求规定进行。
(5)在污水处理厂区内,应有完善的排雨水管道系统,必要时应考虑设防洪沟渠。
3. 辅助构筑物
污水处理厂内的辅助处理构筑物有:泵房、办公室、水质分析化验室、机修、仓库、食堂等。它们是污水处理厂不可缺少的组成部分。其建设面积大小应按具体情况和条件而定。
本设计中辅助构筑物的具体尺寸见
展开阅读全文