资源描述
,第,1,课时对数,第二章,2.2.1,对数与对数运算,1/35,学习目标,1.,了解对数概念,.,2.,会进行对数式与指数式互化,.,3.,会求简单对数值,.,2/35,题型探究,问题导学,内容索引,当堂训练,3/35,问题导学,4/35,思索,知识点一对数概念,解指数方程:,3,x,.,可化为,3,x,,所以,x,.,那么你会解,3,x,2,吗?,答案,答案,不会,因为,2,难以化为以,3,为底指数式,因而需要引入对数概念,.,5/35,对数概念:,假如,a,x,N,(,a,0,,且,a,1),,那么数,x,叫做,,记作,_,_,,其中,a,叫做,,,N,叫做,.,惯用对数与自然对数:,通常将以,10,为底对数叫做,,以,e,为底对数称为,,,log,10,N,可简记为,,,log,e,N,简记为,.,梳理,以,a,为底,N,对数,对数底数,真数,惯用对数,lg,N,自然对数,ln,N,x,log,a,N,6/35,思索,知识点二对数与指数关系,log,a,1(,a,0,,且,a,1),等于?,答案,答案,设,log,a,1,t,,化为指数式,a,t,1,,则不难求得,t,0,,即,log,a,1,0.,7/35,普通地,有对数与指数关系:,若,a,0,,且,a,1,,则,a,x,N,log,a,N,.,对数恒等式:,;,log,a,a,x,(,a,0,,且,a,1).,对数性质:,(1)1,对数为,;,(2),底对数为,;,(3),零和负数,.,梳理,x,N,x,零,1,没有对数,8/35,题型探究,9/35,例,1,在,N,log,(5,b,),(,b,2),中,实数,b,取值范围是,A.,b,5 B.2,b,5,C.4,b,5 D.2,b,0,,且,a,1,;因为在指数式中,a,x,N,,而,a,x,0,,所以,N,0.,反思与感悟,11/35,解得,0,x,0,,,b,1),,则有,A.log,2,a,b,B.log,2,b,a,C.log,b,a,2 D.log,b,2,a,答案,解析,19/35,解答,20/35,命题角度,2,对数式化为指数式,例,4,求以下各式中,x,值:,(1)log,64,x,解答,(2)log,x,8,6,;,(3)lg 100,x,;,解,10,x,100,10,2,,于是,x,2.,21/35,(4),ln e,2,x,;,解,由,ln e,2,x,,得,x,ln e,2,,即,e,x,e,2,.,所以,x,2.,解答,所以,x,1.,22/35,要求对数值,设对数为某一未知数,将对数式化为指数式,再利用指数幂运算性质求解,.,反思与感悟,23/35,跟踪训练,4,计算:,(1)log,9,27,;,解答,(2)log 81,;,(3)log 625.,24/35,命题角度,3,对数恒等式,N,应用,例,5,(1),求,2,中,x,.,解答,(2),求,值,(,a,,,b,,,c,均为正实数且不等于,1,,,N,0).,解,25/35,应用对数恒等式注意:,(1),底数相同,.,(2),当,N,0,时才成立,比如,y,x,与,y,并非相等函数,.,反思与感悟,26/35,解析,25,(5,2,),(2,x,1),2,9.,2,x,1,3,,,又,2,x,10,,,2,x,1,3.,x,2.,跟踪训练,5,设,25,9,,则,x,_.,答案,解析,2,27/35,当堂训练,28/35,1.log,b,N,a,(,b,0,,,b,1,,,N,0),对应指数式是,A.,a,b,N,B.,b,a,N,C.,a,N,b,D.,b,N,a,答案,2,3,4,5,1,29/35,2.,若,log,a,x,1,,则,A.,x,1 B.,a,1,C.,x,a,D.,x,10,答案,2,3,4,5,1,30/35,答案,2,3,4,5,1,31/35,4.,已知,log,x,16,2,,则,x,等于,A.4 B.4,C.256 D.2,答案,2,3,4,5,1,32/35,5.,设,10,lg,x,100,,则,x,值等于,A.10 B.0.01,C.100 D.1 000,答案,2,3,4,5,1,33/35,规律与方法,1.,对数概念与指数概念相关,指数式和对数式是互逆,即,a,b,N,log,a,N,b,(,a,0,,且,a,1,,,N,0),,据此可得两个惯用恒等式:,(1)log,a,a,b,b,;,(2),N,.,2.,在关系式,a,x,N,中,已知,a,和,x,求,N,运算称为求幂运算;而假如已知,a,和,N,求,x,运算就是对数运算,两个式子实质相同而形式不一样,互为逆运算,.,34/35,本课结束,35/35,
展开阅读全文