收藏 分销(赏)

三角形常见辅助线做法总结.doc

上传人:精*** 文档编号:10780889 上传时间:2025-06-13 格式:DOC 页数:8 大小:357.01KB 下载积分:6 金币
下载 相关 举报
三角形常见辅助线做法总结.doc_第1页
第1页 / 共8页
三角形常见辅助线做法总结.doc_第2页
第2页 / 共8页


点击查看更多>>
资源描述
数学专题——三角形中的常用辅助线  典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线                                    找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。    (3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。求证:∠B+∠ADC=180°。 ①关于角平行线的问题,常用两种辅助线; ②见中点即联想到中位线。   (4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 例4:如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF。   求证:DE=DF。 例5:△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。                解题后的思考: (1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。 (2)本题利用“平行法”的解法也较多,举例如下:①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO从而得以解决。 ④如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP从而得以解决。 (5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 例6:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。 求证:CD=AD+BC。 2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。 小结:三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角形。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。   全等三角形中的常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。 二、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。 例::如图2:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF 三、有三角形中线时,常延长加倍中线,构造全等三角形。 例:如图3:AD为 △ABC的中线,求证:AB+AC>2AD。 图3 练习:已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,如图4, 求证EF=2AD。 四、截长补短法作辅助线。 例如:已知如图5:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点。 求证:AB-AC>PB-PC。 五、延长已知边构造三角形: 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B, 求证:AD=BC 六、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 例如:如图7:AB∥CD,AD∥BC 求证:AB=CD。 七有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E 。求证:BD=2CE 图8 八、连接已知点,构造全等三角形。 例如:已知:如图9;AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 九、取线段中点构造全等三有形。 例如:如图10:AB=DC,∠A=∠D 求证:∠ABC=∠DCB。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服