收藏 分销(赏)

1.1.1线性回归的思想方法及应用.doc

上传人:人****来 文档编号:10780597 上传时间:2025-06-13 格式:DOC 页数:4 大小:129.50KB 下载积分:5 金币
下载 相关 举报
1.1.1线性回归的思想方法及应用.doc_第1页
第1页 / 共4页
1.1.1线性回归的思想方法及应用.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
统计案例 1.1 回归分析的基本思想及初步应用 1.1.1线性回归的思想方法及应用 课前预习学案 一、课前预习 预习目标:回顾回归直线的求法,并利用回归直线进行总体估计。 二、预习内容 1.回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。 求回归直线方程的一般步骤:① ;② ;③ 2.典型例题: 研究某灌溉渠道水的流速 与水深 之间的关系,测得一组数据如下: 水深 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 流速 1.70 1.79 1.88 1.95 2.03 2.10 2.16 2.21 (1)求 对 的回归直线方程; (2)预测水深为1.95 时水的流速是多少? 课内探究学案 一、学习目标:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 学习重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 学习难点:解释残差变量的含义,了解偏差平方和分解的思想. 二、学习过程 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据作散点图求回归直线方程利用方程进行预报. 3. 典型例题: 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编 号  1  2  3  4  5  6  7  8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重. (分析思路教师演示学生整理) 评注:事实上,观察上述散点图,我们可以发现女大学生的体重和身高之间的关系并不能用一次函数来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果(即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型,其中残差变量中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 4.相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义. 5. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同. 课后练习与提高 1.对具有相关关系的两个变量统计分析的一种常用的方法是(   ) A.回归分析   B.相关系数分析   C.残差分析   D.相关指数分析 2.在画两个变量的散点图时,下面叙述正确的是(   ) A.预报变量在 轴上,解释变量在 轴上   B.解释变量在 轴上,预报变量在 轴上 C.可以选择两个变量中任意一个变量在 轴上 D.可以选择两个变量中任意一个变量在 轴上 3.两个变量相关性越强,相关系数 (   ) A.越接近于0     B.越接近于1   C.越接近于-1   D.绝对值越接近1 4.若散点图中所有样本点都在一条直线上,解释变量与预报变量的相关系数为(   )   A.0   B.1     C.-1     D.-1或1 5.一位母亲记录了她儿子3到9岁的身高,数据如下表: 年龄(岁) 3 4 5 6 7 8 9 身高( 94.8 104.2 108.7 117.8 124.3 130.8 139.0 由此她建立了身高与年龄的回归模型 ,她用这个模型预测儿子10岁时的身高,则下面的叙述正确的是(   ) A.她儿子10岁时的身高一定是145.83    B.她儿子10岁时的身高在145.83 以上 C.她儿子10岁时的身高在145.83 左右 D.她儿子10岁时的身高在145.83 以下 统计案例 1.1回归分析的基本思想及初步应用 1.1.1线性回归的思想方法及应用 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据作散点图求回归直线方程利用方程进行预报. 二、讲授新课: 1. 教学例题: ① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编 号  1  2  3  4  5  6  7  8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重. (分析思路教师演示学生整理)  第一步:作散点图 第二步:求回归方程 第三步:代值计算 ② 提问:身高为172cm的女大学生的体重一定是60.316kg吗? 不一定,但一般可以认为她的体重在60.316kg左右. ③ 解释线性回归模型与一次函数的不同 事实上,观察上述散点图,我们可以发现女大学生的体重和身高之间的关系并不能用一次函数来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果(即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型,其中残差变量中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义. 3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服