资源描述
*,普通高中课程数学选修4-1,第二讲 直线与圆的位置关系,高中课程数学选修4-1,(考试全部内容,),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,圆心角的度数等于它所对的弧的度数。,同弧或等弧所对的圆周角相等;,同圆或等圆中,相等的圆周角所对的弧也相等.,半 圆(或直径)所对的圆周角是直角;,90,的,圆周角所对的弦是直径.,圆上一条弧所对的,圆周角,等于它所对的,圆心角的一半,。,圆周角定理,圆心角定理,推论1,推论2,一。,圆周角定理,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,二,.,圆内接四边形的性质与判定定理,A,B,C,D,O,A,B,C,D,A,D,B,C,D,A,B,C,性质定理1,圆内接多边形的对角互补,性质定理2,圆内接多边形的外角等于它的内角的对角,如果一个四边形的对角互补,那么它的四个顶点共圆.,如果四边形的一个外角等于它的内角的对角,,那么它的四个顶点共圆.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,性质定理1,圆内接四边形的对角互补,性质定理2,圆内接边形的外角等于它的内角的对角。,如果一个四边形的对角互补,那么它的四个顶点共圆.,如果四边形的一个外角等于它的内角的对角,那么它的四个顶点共圆.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例:假设,:四边形ABCD中,,B+D=180,求证,:A,B,C,D在同一圆周上(简称四点共圆).,C,A,B,D,E,O,A,B,C,D,E,O,证明:(1)如果点D在,O外部。则,(1),(2),AEC+B=180因B+D=180,得 D=AEC与“三角形外角大于任意,不相邻的内角”矛盾。故点D不可能在圆外。,(2)如果点D在,O内部。则B+E=180,B+ADC=180E=ADC,同样矛盾。点D不可能在O内。,综上所述,点D只能在圆周上,四点共圆。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,圆内接四边形判定定理,如果一个四边形的对角互补,那么它的四个顶点共圆.,当问题的结论存在多种情形时,通过对每一种情形分别论证,最后获证结论的方法-,穷举法,推论,如果四边形的一个外角等于它的内角的对角,那么它的四个顶点共圆.,D,A,B,C,E,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,如图,都经过A,B两点。经过点A的直线CD与 交于点C,与 交与点经过点B的直线EF与 交于点E,与 交与点F.,A,C,D,E,B,F,证明,:连接AB,BAD=E.,BAD+F=180,E+F=180,CE/DF.,求证:,CE/DF.,四边形ABEC是 的内接四边形。,四边形ADFB是 的内接四边形。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,习题,1.AD,BE是ABC的两条高,,求证:CED=ABC.,2.求证:对角线互相垂直的四边形中,各边中点在同一个圆周上。,C,A,B,E,D,o,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,三.圆的切线的性质及判定定理,圆与直线的位置关系:,相交,-有两个公共点,相切,-只有一个公共点,相离,-没有公共点,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,切线的性质定理:,O,M,推论1:,经过,圆心,且垂直于切线的直线必经过,切点,.,推论2:,经过,切点,且垂直于切线的直线必经过,圆心.,圆的切线垂直于经过切点的半径,A,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,切线的判定定理:,经过半径的外端并且垂直于这条半径的直线是圆的切线.,A,O,B,.直线与圆只有一个公共点,是切线.,在直线上,任,取异于A的点B.,连OB.,则在RtABO中,OBOA=r,故B在圆外,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,如图,AB是O的直径,O过BC的中点D,DEAC.求证:DE是O是切线.,证明:连接OD.BD=CD,OA=OB,OD是ABC的中位线,OD/AC.,又DEC=90,ODE=90,又D在圆周上,DE是O是切线.,A,O,B,D,C,E,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,习题,如图,ABC为等腰三角形,O是底边BC的中点,O与腰AB相切于点D.,A,B,O,C,D,求证:AC与O相切.,E,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,2.已知,:OA和OB是O的半径,并且OAOB,P是OA,上任意一点,BP的延长线交,O于Q.过Q作O的切,线交OA的,延长线于R,.,求证:RP=RQ,B,O,P,A,R,Q,AQO=APQ,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,BC与AD的度数差的一半等于APD的度数.,D,A,C,B,P,AD的度数与BC的度数和的一半等于APD的度数.,D,A,C,B,P,E,AB与CD相交于圆内一点P.,证明:ACD=AD,P=BAC-ACP,即APD的度数等于 BC与AD度数的一半.,圆内角定理:,且BAC=P+ACP,CAB=BC,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,1.弦切角:,顶点在圆上,一边与圆相交,另一边与圆相切的角叫做弦切角,四。弦切角性质,2.弦切角定理,切角等于它所夹的弧所对的圆周角,D,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,弦切角性质,例.如图已知AB是O的直径,AC是弦,直线CE和O切于点C,ADCE,垂足为D.求证:AC平分BAD.,解:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,五。与圆有关的相关线段,1.相交弦定理,圆内的两条相交弦,被交点分成的两条线段长的积相等。,A,B,C,D,P,PAPB=PCPD,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,与圆有关的相关线段,2.,切,,割线定理,从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.,PAPB=PCPD,A,B,C,D,P,PE=PCPD,E,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,与圆有关的相关线段,4.切线长定理,从圆外一点引圆的两条切线,它们的切线长,相等,圆心和这一点的连线平分两条切线的夹角,PA=PC,P,A,C,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,与圆有关的相关线段,例.,如图,AB是O的直径,过A,B引两条弦AD和BE,相交于点C,求证:,ACAD+BCBE=AB.,证明:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,练习,1.如图,经过圆上的点T的切线和弦AB的延长线相交于点C。,求证:ATC=TBC,2.如图,O和O都经过A,B两点,AC是O,的切线,交O于点C,AD是O的切线,交O,于点D,求证:AB=BCBD,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,
展开阅读全文