收藏 分销(赏)

高中数学立体几何大题(有答案).docx

上传人:天**** 文档编号:10601025 上传时间:2025-06-04 格式:DOCX 页数:4 大小:100.10KB 下载积分:5 金币
下载 相关 举报
高中数学立体几何大题(有答案).docx_第1页
第1页 / 共4页
高中数学立体几何大题(有答案).docx_第2页
第2页 / 共4页


点击查看更多>>
资源描述
1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点. (Ⅰ)求证:AP∥平面BEF; (Ⅱ)求证:BE⊥平面PAC. 解答: 证明:(Ⅰ)连接CE,则 ∵AD∥BC,BC=AD,E为线段AD的中点, ∴四边形ABCE是平行四边形,BCDE是平行四边形, 设AC∩BE=O,连接OF,则O是AC的中点, ∵F为线段PC的中点, ∴PA∥OF, ∵PA⊄平面BEF,OF⊂平面BEF, ∴AP∥平面BEF; (Ⅱ)∵BCDE是平行四边形, ∴BE∥CD, ∵AP⊥平面PCD,CD⊂平面PCD, ∴AP⊥CD, ∴BE⊥AP, ∵AB=BC,四边形ABCE是平行四边形, ∴四边形ABCE是菱形, ∴BE⊥AC, ∵AP∩AC=A, ∴BE⊥平面PAC. 3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2. (Ⅰ)求证:BE∥平面PAD; (Ⅱ)求证:BC⊥平面PBD; (Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°. 解答: 解:(Ⅰ)取PD的中点F,连接EF,AF, ∵E为PC中点,∴EF∥CD,且, 在梯形ABCD中,AB∥CD,AB=1, ∴EF∥AB,EF=AB,∴四边形ABEF为平行四边形, ∴BE∥AF,∵BE⊄平面PAD,AF⊂平面PAD, ∴BE∥平面PAD.(4分) (Ⅱ)∵平面PCD⊥底面ABCD,PD⊥CD,∴PD⊥平面ABCD, ∴PD⊥AD.(5分) 如图,以D为原点建立空间直角坐标系D﹣xyz. 则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1).(6分) ,, ∴,BC⊥DB,(8分) 又由PD⊥平面ABCD,可得PD⊥BC, ∴BC⊥平面PBD.(9分) (Ⅲ)由(Ⅱ)知,平面PBD的法向量为,(10分) ∵,,且λ∈(0,1) ∴Q(0,2λ,1﹣λ),(11分) 设平面QBD的法向量为=(a,b,c),,, 由,,得 , ∴,(12分) ∴,(13分) 因λ∈(0,1),解得.(14分) 4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证: (1)直线PA∥平面DEF; (2)平面BDE⊥平面ABC. 解答: 证明:(1)∵D、E为PC、AC的中点,∴DE∥PA, 又∵PA⊄平面DEF,DE⊂平面DEF, ∴PA∥平面DEF; (2)∵D、E为PC、AC的中点,∴DE=PA=3; 又∵E、F为AC、AB的中点,∴EF=BC=4; ∴DE2+EF2=DF2, ∴∠DEF=90°, ∴DE⊥EF; ∵DE∥PA,PA⊥AC,∴DE⊥AC; ∵AC∩EF=E,∴DE⊥平面ABC; ∵DE⊂平面BDE,∴平面BDE⊥平面ABC. 13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证: (1)平面ADE⊥平面BCC1B1; (2)直线A1F∥平面ADE. 解答: 解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱, ∴CC1⊥平面ABC, ∵AD⊂平面ABC, ∴AD⊥CC1 又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线 ∴AD⊥平面BCC1B1, ∵AD⊂平面ADE ∴平面ADE⊥平面BCC1B1; (2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点 ∴A1F⊥B1C1, ∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1, ∴A1F⊥CC1 又∵B1C1、CC1是平面BCC1B1内的相交直线 ∴A1F⊥平面BCC1B1 又∵AD⊥平面BCC1B1, ∴A1F∥AD ∵A1F⊄平面ADE,AD⊂平面ADE, ∴直线A1F∥平面ADE. 16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点 (1)求证:EF∥平面SAD (2)设SD=2CD,求二面角A﹣EF﹣D的大小. 解答: (1)如图,建立空间直角坐标系D﹣xyz. 设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,. 取SD的中点,则.平面SAD,EF⊄平面SAD, 所以EF∥平面SAD. (2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF中点,,, 又,, 所以向量和的夹角等于二面角A﹣EF﹣D的平面角.. 所以二面角A﹣EF﹣D的大小为. 第 4 页
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服