收藏 分销(赏)

人寿保险保费与责任准备金计算原理.ppt

上传人:w****g 文档编号:10589758 上传时间:2025-06-03 格式:PPT 页数:117 大小:2.55MB
下载 相关 举报
人寿保险保费与责任准备金计算原理.ppt_第1页
第1页 / 共117页
人寿保险保费与责任准备金计算原理.ppt_第2页
第2页 / 共117页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第六章 保险费率和责任准备金,1,【,学习要点,】,大数定律的保险意义,保险费率的构成,1,2,保险责任准备金、财产保险责任准备金,与人寿保险责任准备金,5,财产保险费率的厘定与人寿保险费率的厘定,4,保险费率厘定原则和方法,3,2,第一节 保险费率,一、大数定律及其在保险中的应用,二、保险费率厘定的原则与方法,三、人寿保险费率的厘定,四、财产保险费率的厘定,3,一、大数定律及其在保险中的应用,我们知道事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐趋于某个常数。大数定律所要揭示的就是这类稳定性。,大数定律:,是用来说明大量的随机现象由于偶然性相互抵消所呈现的必然数量规律的一系列定理的统称,是保险经营的重要数理基础。,(一)大数定律,4,设,X1,,,X2,,,,,Xn,是相互独立的随机变量序列,且具有相同的数学期望和方差:,,(,n=1,,,2,,,),,则对于任意的小正数 都有,将这一法则运用于保险经营,可说明其含义。,1-1,切比雪夫大数定律,5,假设有,n,个被保险人,他们同时投保了,n,个相互独立的标的(比如汽车),每个标的发生损失额的大小是一个随机变量,且所有损失额,X 1,,,X 2,,,,,X n,期望值相等,即有,如果我们按照保险标的可能发生的损失的期望值计算纯保费,而把每个,X n,视为实际损失,显然,每个被保险人的实际损失,X n,与其损失期望值一般都不会相等,然而根据大数定律,只要承保标的数量足够大,投保人所缴纳的纯保费与每人平均所发生的损失 几乎相等。,这个结论反过来则说明保险人该如何收取纯保费,也即只有当一个投保人所缴的纯保费等于他的损失期望值时,才能保证保险人在整体上的收支平衡。,1-1,切比雪夫大数定律,6,1-2,贝努利大数定律,7,1-2,贝努利大数定律,8,1-2,贝努利大数定律,贝努利大数定律表明事件发生的频率具有稳定性,也即当试验次数很大时,事件发生的频率与其概率有较大偏差的可能性很小。,这一定律是用频率解释概率的数理基础,这对于利用统计资料来估计损失概率是极其重要的。在非寿险精算中,可以假设某一保险标的具有相同的损失概率,这样就可以通过以往的有关统计数据,求出这类保险标的发生损失的频率,这个计算出来的频率即为损失概率。,但通过这种方法计算出来的损失概率是对实际概率的估计,与实际概率之间有一个偏差。根据大数定律,在观察次数很多或观察周期很长的情况下,计算出来的这一频率将与实际损失概率很接近。也就是说,随着保险标的数量的增加,根据概率的频率解释计算出来的理论损失概率与实际损失概率之间的误差会逐渐减少,估计出来的损失概率的稳定性和真实性越高。,所以,,保险人承保的保险标的的数量越大,保险人根据大数定律厘定的保费越准确,财务稳定性越强,经营危险越小。,9,1-3,泊松大数定律,10,1-3,泊松大数定律,泊松大数定律运用于保险经营上,可以说明,尽管各个相互独立的危险单位的损失概率可能各不相同,但只要有足够多的标的,仍可在平均意义上求出相同的损失概率。为了有足够多的标的,便于运用大数定律,可以把性质相近的标的集中在一起,求出一个整体的费率。,大数定律应用于保险得出最有意义的结论是:,当保险标的的数量足够大时,通过以往统计数据计算出来的估计损失概率与实际概率的误差将很小。保险经营利用大数定律把不确定数量关系向确定数量关系转化,即某一危险事件是否发生对某一个保险标的来说是不确定的,可能发生也可能不发生。但当保险标的的数量很大时,我们可以很有把握地确定其中遭受危险事故的保险标的数量是多少。这样,根据大数定律,我们把对单个保险标的来说是否发生事故的不确定的数量关系转化为对保险标的的集合来说确定的数量关系。,11,1-4,、举例,在抛掷硬币的随机试验中,知道正面朝上的概率为,0.5,。但,0.5,只是理论上的概率,在实际的随机试验中实际发生的频率不会恰好为,0.5,,而会有一些误差。,在,10,次,抛掷硬币的随机试验中,实际出现正面的次数可能为,3,次,另,7,次为反面。这时,正面朝上的实际发生频率为,0.3,,与理论概率,0.5,有,0.2,的误差。,在,1000,次,抛掷硬币的随机试验中,实际出现正面的次数可能为,470,次,另,530,次为反面。这时,正面朝上的实际发生频率为,0.47,,与理论概率,0.5,有,0,03,的误差。,在,100000,次,抛掷硬币的随机试验中,实际出现正面的次数可能为,49700,次,另,50300,次为反面。这时,正面朝上的实际发生频率为,0.497,,与理论概率,0.5,只有,0.003,的误差。,12,1-4,、举例,从上面的分析可以看出,随着试验次数的增加,正面朝上的概率为,0.5,的可信性也随着增大,换句话说,正面朝上的实际发生频率的稳定性会增加。,所以,相对于单个损失危险单位,包含多个损失危险单位集体更加能做出准确的估计。,保险标的数量越多,实际发生损失频率与预期损失概率越接近,通过以往统计数据得出的预期损失概率的确定性就越高,,正如抛掷,100000,次硬币出现正面朝上的次数会比抛掷,10,次硬币出现正面朝上的次数更接近其半数一样。,13,(二)保险运行的数理解释,人们在日常生活中会面临各种危险,这些危险往往给人们带来巨大的财产损失和经济困难,如火灾与风灾的财产损失、失业与死亡的个人损失。尽管人们无法预测或完全预防这些危险的发生,但他们能够为这些损失对其财务造成的影响做准备。,保险正是提供了这样一种帮助人们分散危险、分摊损失的机制,这就是,保险的本质,损失分担,,其方法是以确定的小损失(缴纳的保费)取代不确定的大损失。在此,可以下面简单的例子来说明保险中的损失分摊机制。,14,(二)保险运行的数理解释,1000,栋房屋,着火概率,=0.2%,10000,元,/,栋,不着火概率,=99.8%,根据统计资料,在这一年内预计失火的房屋是,2,栋,由此引发的单个房屋赔款期望值为,20,元(,0.00210000+0.9980=20,),总额期望值为,201000=20000,元,很显然保险人对每位房主应收取的费用,P,为,20,元,,即每人缴纳,20,元,可获得一旦危险发生时的,10000,元的补偿。,15,(二)保险运行的数理解释,在上述分析中,值得注意的是保险公司在一年内实际的赔款总额是一个随机变量,而这里,20000,元却是保险公司根据以往统计数据预测的赔款总额的期望值。很显然实际的赔款发生额会与预测期望值,20000,元有偏差。,一般而言,随着保险标的数额的增加,这种偏差会减小,,比如有,10000,甚至更多房屋参加了这个保险计划,则根据大数定律,发生较大偏差的可能性就很小了;反之,如果该保险计划只有少数保险标的,则保险公司是很难准确估计期望损失的。如果保险标的少到只有一个,即只为一栋房屋投保,则无异于一次赌博。,显然,大数定律在这种损失分摊的机制中起着重要的作用。保险就像是一个蓄水池,每人贡献一点保费,这些资金被保险公司集中起来以弥补少数不幸者所遭受的损失。当参与这种蓄水机制的单位数越多时,蓄水池的功能越能正常稳定地发挥。,16,(三)大数定律与风险分散,在上面例子中我们看到房主只需缴纳,20,元的纯保费,即可获得在危险发生时保险公司对损失的赔偿,10000,元。,保险公司收取了保费,也就承担了被保险人转移给它的危险,那么保险公司是如何,管理危险,的呢,?,17,(三)大数定律与风险分散,事实上,保险公司并不能更好地预测单个被保险人面临风险的可能性的大小,也不可能降低危险发生的可能性。,在预测危险方面,保险人与被保险人的根本区别在于被保险人只能预测自己面临的危险,而保险人预测的是所有被保险人面临的整体危险。虽然保险人不能准确预测具体某个被保险人是否发生损失,但是保险人可以对承担的整体危险做出比较准确可信的估计。,下面就从随机变量的方差与变异系数上加以具体分析。,18,数学分析:,19,数学分析:,20,(四)大数定律在保险中应用的双重性,保险公司必须根据以往的统计资料预先给出每栋房屋失火的概率并由此计算出纯保费。因此准确估计出险概率对保险公司至关重要。,根据大数定律,以往经验数据越多,对事件发生的概率估计就越准确。这种估计的准确性是能否准确预测未来危险的前提条件。但是另一方面,即使我们能准确估计出事件发生的概率,如果未来危险单位数较少时,也很难准确预测未来危险。为使预期结果能很好地接近真实结果,必须将概率估计值运用到大量危险单位中。因此,大数定律的应用具有双重性。,21,(四)大数定律在保险中应用的双重性,第一重:,为准确估计事件发生的概率,保险公司必须掌握大量的经验数据。经验数据越多,对事件发生的概率的估计就越准确。,第二重:,一旦估计出事件发生的概率,必须将此概率估计值运用到大量的危险单位中才能对未来损失有比较准确的估计。,在用经验数据进行未来危险预测时,保险公司往往假设过去事件发生的概率与未来事件发生的概率相同,并且对过去事件发生概率的估计是准确的。但是过去事件发生的概率与未来事件发生的概率往往不一样。事实上,由于各种条件的变化,事件发生的概率也在不断变化。另外,也不能从过去的经验数据中得出完全准确的概率。所有这些都导致实际经验与预期结果之间存在必然偏差,保险公司的危险实际上也就是这种偏差。保险公司可以通过承保大量危险单位提高对危险单位预测的准确性。,22,第一节 保险费率,一、大数定律及其在保险中的应用,二、保险费率厘定的原则与方法,三、人寿保险费率的厘定,四、财产保险费率的厘定,23,(一)保险费率的构成,保险费:,投保人为获得经济保障而缴纳给保险人的费用。保险费由纯保险费和附加保险费构成。,纯保险费:,主要用于保险赔付支出。,附加保险费:,主要用于保险业务的各项营业支出,其中包括营业税、代理手续费、企业管理费、工资及工资附加费、固定资产折旧费以及企业盈利等。,24,(一)保险费率的构成,保险费率:,是保险费与保险金额的比例,又被称为保险价格。同样,保险费率一般由纯费率与附加费率两部分组成。,纯费率:,又称净费率,它是用来支付赔款或保险金的费率,其计算依据因险种的不同而不同。财产保险纯费率的计算依据是损失概率,人寿保险纯费率计算的依据是利率和生命表。,附加费率:,是附加保费与保险金额的比率。把纯费率和附加费率加总起来,就构成保险费率。,25,(二)保险费率厘定的基本原则,1,、公平合理原则,2,、充分原则,3,、相对稳定原则,4,、促进防灾防损原则,26,(三)保险费率厘定的方法,1,、分类法,2,、增减法,3,、观察法,纯保险费率法,损失比率法,表定法,经验法,追溯法,27,1,、分类法,定义:,依据某些重要的标准,对危险进行分类,并据此将被保险人分成若干类别,把不同的保险标的根据危险性质归入相应群体,分别确定费率的方法。,基于这样一种假设:,被保险人将来的损失很大程度上由一系列相同的因素决定。这一方法有时也被叫做手册法,因为各种分类费率都印在手册上,保险人只需查阅手册,便可决定费率。这是一种最常用也是最主要的保险费率厘定方法,被广泛运用于财产保险、人寿保险和大部分人身意外伤害保险。,对于,财产保险,,一般根据标的物的使用性质分为不同的类别,每一类又可以分为若干等级。不同类别,不同等级,费率各异。,对于,人身保险,,一般按照性别、年龄、健康状况、职业等分类。分类法的思想符合保险运行所遵循的大数定律。大数定律要求保险标的损失概率相同。只有标的物面临同质危险,才能较好地符合这个条件。因此,必须在对危险进行分类的基础上确定不同类别的保险费率。,28,分类法,-1,(1),纯保险费率法,29,分类法,-1,30,分类法,-1,31,分类法,-2,A,为实际损失率;,E,为预期损失率。,优点:,在于便于运用,适用费率可迅速查到。,(2),损失比率法,定义:,是指根据实际损失比率调整费率。例如机动车辆险的预期损失比率为,60%,,即总保险费的,40,为费用比率。而实际发生的损失比率为,70%,,则保险费率应该提高,16.7%,。,缺点:,不尽公平。如在分类法下是不加区别地向所有投保人按确定的保 险费率征收保费。这对不同的投保人来说是欠公平的。例如,相对于钢筋混凝土建筑来说,砖木结构的建筑遭受火灾的危险更大,但两者所缴的保费却一样。,32,2,、增减法,定义:,是指在同一分类中,对投保人给以变动的费率。,增减法是在凭借分类法确定的基本费率的基础上,再依据实际情况予以细分测定费率。与分类费率相比,在增减法下厘定出来的费率,有可能高于或低于分类法所确定的费率。,分类:,表定法、经验法、追溯法。,但无论何种方法,,均适用于较大规模的投保人,,这是因为:,第一,对小规模投保人而言,费率的些许变动对其影响不大,但对大规模投保人而言,由于保险金额高,费率稍微发生变动就会产生影响。,第二,增减费率所花的费用较大。只有经过调整的保费存在较大变动的情况下,调整保费的费用支出才可能得到弥补。,33,增减法,-1,定义:,以每一危险单位为计算依据,在基本费率的基础之上,参考标的物的显著危险因素来确定费率。,使用表定法,首先要在分类中就各项特殊危险因素,设立客观标准。因为典型的被保险人的危险,既可能比被保险人的平均危险高,也可能比被保险人的平均危险低。,优点:,第一,能够促进防灾防损。若被保险人的防灾防损意识不强,可能会面临较高的保险费率,为了改变这一状况,被保险人将主动减少有关危险因素。第二,适用性较强。表定法可适用于任何大小的危险单位,而经验法和追溯法不能做到这一点。,缺点:,主要是使用该法成本太高,保险机构为了详细了解被保险人的情况,经常要支付大量营业费用。另外,该法只注重物质或有形的因素而忽视了人的因素,这是片面的。,(1),表定法,34,增减法,-2,定义:,该方法又称为预期经验法。它是根据被保险人过去的损失记录,对按分类法计算的费率加以增减,但当年的保费额并不受当年经验的影响,而是以过去数年的平均损失来修订未来年份的保险费率。,理论基础:,凡能影响将来的风险因素,必已影响过去的投保人的经验。其计算公式如下:,M,为经验调整数;,A,为经验时期被保险人的实际损失;,E,为被保险人适用某费率的预期损失;,C,为可靠度。,(2),经验法,35,增减法,-2,例如:,某投保人在过去,3,年经验期间预期损失,5,万元,实际损失,4,万元,可靠度为,80%,,则其经验调整数可依据上式求得:,即该投保人下年所缴的保费将减少,13,。,经验法的,优点,是,在决定被保险人的保费时,已考虑到若干具体影响因素,而表定法只给出了物质因素,没有包括非物质因素。与表定法相比,经验法更能全面地顾及到影响危险的各项因素。经验法主要应用于汽车保险、公共责任保险、盗窃保险等。,36,增减法,-3,该法是依据保险期间的损失为基础来调整费率的。投保人起初以其他方法(如表定法或经验法)确定的费率购买保单,而在保险期届满后,再依照本法确定保费。如果实际损失大,缴付的保费就多;实际损失小,缴付的保费就少。,追溯保险费的,计算公式,是,RP,为追溯保险费;,BP,为基本保险费;,L,为实际损失额;,VCF,为损失调整数(大于,1,);,TM,为税收系数(大于,1,)。,(3),追溯法,37,增减法,-3,基本保险费:,又叫纯保险支出,它由两部分组成,一部分用于支付与理赔有关的各种费用,一部分用于弥补超过最大保险费的损失额。基本保费通常是标准保险费的某一百分比。,损失调整系数:,将随着损失变动而变动的费用考虑在内。,税收系数:,则是一个将税收因素考虑在保费之内的数字。,追溯保险费有,上限和下限,。,38,举例:,例如,如果一厂商投保,起初,它所预缴的标准保费是依据经验法而定的,为,1,万元。由此,可使用追溯法得出基本保险费(,BP,),如基本保险费为标准保险费的,20%,,即,2000,元。损失调整系数和税收系数分别为,1.1,和,1.2,,在保险期间,投保人损失了,1000,元或,2,万元。,当其损失,1000,元时,应缴的保费为:,当其损失,2,万元时,应缴的保费为:,但保费的缴纳有最高限额和最低限额。假设最低保费额为标准保费的,50%,,最高保费额为标准保费的,150%,。这样,投保人损失,1000,元时,就必须缴纳,5000,元(,1000050%,)的保费,而不是,3720,元。当投保人损失,20000,元时,只需缴纳,15000,元(,10000150%,),而不必缴纳,28 800,元。,必须指出的是,追溯法的计算方法不止一种,它视具体情况而定,追溯法计算复杂,其应用范围不广,仅局限于少数大规模投保人。,39,3,、观察法,定义:,该法又被称为个别法或判断法,它是就某一被保危险,单独厘定出费率,在厘定费率的过程中保险人主要依据自己的判断。,之所以采用观察法,是因为保险标的的数量太少,无法获得充足的统计资料来确定费率。这种方法虽不尽科学,但有其,可取之处:,根据不同性质的危险,确定出相应的费率,更具有灵活性。在标的数量较少的情况下,不能将各种危险生硬地集中在一起来厘定费率,这样做违反了大数定律,无法保证费率的准确性。,用观察法厘定费率,尽管主要考虑个别危险因素,但仍需要运用相关的经验和数据,这就在一定程度上保证了其科学性。,40,第一节 保险费率,一、大数定律及其在保险中的应用,二、保险费率厘定的原则与方法,三、人寿保险费率的厘定,四、财产保险费率的厘定,41,(一)人寿保险费概述,人寿保险费,由两部分构成:纯保险费和附加保险费。,纯保险费:,可分为危险保险费和储蓄保险费。前者用于当年保险金的支付,后者则是一种累积的保险费,用来弥补未来年份的赤字。,附加保险费:,用于保险费经营中的一切费用开支。,纯保险费和附加保险费构成了营业保险费,它是寿险机构实际收取的保险费。,寿险计算的基本原则,:,收支平衡原则,“收”是指保险机构收取的保险费总额;“支”是指保险机构的保险金给付和支出的各项经营费用。这里所说的收支平衡,并不是数学意义上的简单相等,它要考虑货币的时间价值等一些重要因素。,42,(一)人寿保险费概述,以,缴费方法,为依据,寿险保险费可分为自然纯保险费、趸缴纯保险费和均衡纯保险费。,自然纯保险费:,是以死亡率为缴付标准计算的保险费,它按年收取。随着年龄的增大,人死亡的概率越来越高,需缴纳的保险费也越来越多,因此,这种缴费方式年轻人乐于接受,而老年人则不希望采用这种方式。,趸缴保险费:,是在投保之日起便一次性缴清的保险费,如果从趸缴保险费中扣除附加保险费,就得到了趸缴纯保险费。计算趸缴保险费时,要考虑到货币的时间价值和死亡率因素,要把各个年岁应缴的保险费折合成现值。在现实生活中,很少有人一次性缴清所有保险费。,均衡保险费:,是指在某一期限内,投保人按固定数额缴纳的保险费,从均衡保险费中扣除附加保险费,就是均衡纯保险费。与自然纯保险费和趸缴纯保险费相比,均衡纯保险费更能让人接受,因此,在保险业中得到了广泛的运用。,43,(二)利息的概念与计算,利息:,是资金所有者由于借出资金而获得的报酬。利息广泛存在于现代生活之中,已成为衡量经济效益的一个尺度。,利息率:,是指借贷期间所形成的利息额与所贷资金的比值。以不同的标准,可以划分出各种各样的利率类别。,以,计算利息的期限单位,为标准,利率可划分为年利率、月利率和日利率。,年利率:是以年为时间单位计算利息;,月利率、日利率:分别是以月、日为时间单位计算利息。,44,1,、单利,45,2,、复利,46,3,、终值和现值,终值:,又称将来值,是现在一定量现金在未来某一时点上的价值,也就是本利和。在上例中,,10000,元在,3,年后的本利和,11800,元就是终值。,现值:,又称本金,是指未来某一时点上的一定量现金折合到现在的价值。如上例中,3,年后的,11800,元折合成现在的价值为,10000,元,这,10000,元就是,3,年后的,11800,元现值。,47,现值可表示为:,式中,令,,,v,被称之为折现因子,则现值可表示为:,例如,求现在存入多少钱,可在复利为,6%,的前提下,得到,3,年后的,10000,元。,在以复利计算时,终值可表示为:,3,、终值和现值,48,4,、年金,定义:,是指在一定时间内按照一定的时间间隔有规则地收付的款项,依据不同的标准,年金可划分为很多类。,分类:,1,、按支付条件,可分为,确定年金和生命年金,2,、以每期年金支付的条件为标准,可分为,期首付年金和期末付年金,期首付年金:,是指年金的支付发生在期初。,期末付年金:,是指年金的支付发生在期末。,3,、以支付开始的时间为标准,可分为,即期年金和延期年金,即期年金:,是指一旦年金领受人符合条件就立即开始支付的年金,延期年金:,是延长一定时期后才开始支付的年金。,49,50,51,52,53,(三)生命表,1,、生命表的含义及分类,含义:,是根据一定时期某一国家或地区的特定人群的有关生存、死亡的统计资料,加以分析整理而形成的一种表格,它是人寿保险测定危险的工具,是寿险精算的数理基础,是厘定人寿保险纯费率的基本依据。,分类:,(1),以死亡统计的对象为标准,国民生命表和经验生命表,(2),以反映程度为标准进行分类,完全生命表和简单生命表,54,2,、生命表的内容,在生命表中,首先要选择初始年龄并假定在该年龄上,有一定数量的人生存,这个数量就叫做,基数,。一般选择,0,岁为初始年龄,并规定此年龄的人数,通常选择,10,万、,100,万、,1000,万等整数。下面以中国人寿保险业经验生命表(,19901993,年)的部分内容为例说明。,表,10 1,生命表,年龄,生存人数,死亡人数,生存率,死亡率,25,980199,723,0.999262,0.000738,26,979475,713,0.999272,0.000728,27,978762,712,0.999273,0.000727,28,978051,714,0.999270,0.000730,29,977337,726,0.999257,0.000743,30,976611,755,0.999227,0.000773,31,975856,789,0.999191,0.000809,55,生命表中使用的,主要函数,有以下几个:,56,生命表中使用的,主要函数,有以下几个:,57,3,、生命表中的几个关系式,58,3,、生命表中的几个关系式,59,3,、生命表中的几个关系式,60,(四)纯保险费率的计算,与自然纯保险费、趸缴纯保险费、均衡纯保险费对应,保险费缴纳方式分为两种:,趸缴和分期缴纳,。,趸缴:,指投保人将保险费一次缴清;,分期缴纳:,指在一定期限内按某一数额缴纳保险费。,61,1,、趸缴纯保险费的计算,(1),定期生存,趸缴纯保险费的计算,(2),定期死亡保险,的趸缴纯保险费的计算,(3),混合保险,趸缴纯保险费率的计算,(4),年金保险的,趸缴纯保险法,62,1-1,定期生存趸缴纯保险费的计算,定期生存保,险:,是以被保险人在一定时期继续生存为保险金给付条件的一种保险形式,也就是说,如果被保险人在保险期届满时仍然存活,则保险机构给付保险金;如果死亡,则不给付保险金,也不退还所缴保险费。,63,1-1,定期生存趸缴纯保险费的计算,分析:,64,1-1,定期生存趸缴纯保险费的计算,65,1-2,定期死亡保险的趸缴纯保险费计算,定期生存保险:,又叫定期人寿保险,是以被保险人在保险期限内死亡为条件支付保险金的一种形式。也就是说,只有当保险人在保险期间死亡时,保险机构才支付保险金,如若继续存活,则不予支付。,66,1-2,定期死亡保险的趸缴纯保险费计算,分析:,67,1-2,定期死亡保险的趸缴纯保险费计算,68,1-3,混合保险趸缴纯保险费率的计算,混合保险:,是一种生死保险,是一种无论被保险人生死与否,一旦保险期届满,保险人均须支付保险金的保险形式。因此,该保险可以看做是,定期生存保险和定期死亡保险的混合,。那么,其应缴的保险费应是定期生存保险费和定期死亡保险费之和。,这样,就可以得出混合保险的趸缴保险费率公式。设 为趸缴保险费,则,69,1-3,混合保险趸缴纯保险费率的计算,70,1-4,年金保险的趸缴纯保险法,年金保险:,指保险公司在一定时期内,以年金方式按期支付直至期满的一种保险形式,年金保险分为两个阶段:一是缴费期;二是年金支付期。这里探讨的是缴费期趸缴保险费的计算方法。,例:,71,分析:,72,73,2,、分期缴付纯保险费的计算,一次性缴清保险费,可以减少诸多烦琐环节,这对保险人、被保险人双方都有利,但现实的情况是,被保险人往往不愿意拿出较大的一笔钱缴纳保险费。,为了解决这个问题,保险费缴纳可以采取分期的方式,即保险人允许被保险人分期缴纳,如按年、按季、按月来缴付。,一般来说,按年度缴费最为普遍。这里就年度纯保险费的计算予以介绍。,74,2-1,定期生存保险年度缴付纯保险费,例:设有,25,岁的被保险人,980199,人购买,3,年期的生存保险,保险金额,1,单位元,利率,6%,,保险费均在期首支付,求每年应缴保险费。,分析:,75,2-1,定期生存保险年度缴付纯保险费,76,2-1,定期生存保险年度缴付纯保险费,77,2-2,定期死亡保险年度缴付纯保险费,78,2-2,定期死亡保险年度缴付纯保险费,79,2-2,定期死亡保险年度缴付纯保险费,80,(五)毛保险费的计算,毛保险费:由,纯保险费和附加保险费,构成。,计算毛保险费一般可使用三种方法:,1,、三元素法,2,、比例法,3,、比例常数法,81,1,、三元素法,三元素法把附加费用分为三类:原始费用、维持费用、收费费用。,原始费用:,保险公司为招揽新合同,在第一年度支出的一切费用。,维持费用:,指整个保险期间为使合同维持保全的一切费用,它应分摊于各期。,收费费用:,指收取保险费时的支出。与维持费用一样,它也分摊于各期。把将来年份的附加费用折合成现值,就可得到附加保险费的现值之和。,再根据“毛保险费现值,=,纯保险费现值,+,附加保险费现值”的原理来计算总保险费。,三元素法的优点,:计算结果准确,三元素法的缺点:,计算过程复杂、烦琐,82,2,、比例法,83,2,、比例法,84,3,、比例常数法,85,3,、比例常数法,分析:,86,第一节 保险费率,一、大数定律及其在保险中的应用,二、保险费率厘定的原则与方法,三、人寿保险费率的厘定,四、财产保险费率的厘定,87,(一)纯费率的计算,纯费率,是用于弥补被保险人因保险事故而造成的损失的金额,它的计算公式,式中,保额损失率是赔偿金额与保险金额的比值,稳定系数则是衡量期望值与实际结果密切程度的一个参数。,保额损失率,的计算公式为:,纯费率,=,保额损失率,(,1+,稳定系数),88,(一)纯费率的计算,89,(一)纯费率的计算,90,(一)纯费率的计算,(表,10,3,)损失率、离差和离差平方和,代入公式得,代入公式得,于是可求出稳定系数:,稳定系数,=,均方差,平均保额损失率,=0.00290.05 =0.058,一般说来,稳定系数越低,则保险经营的稳定程度越高;稳定系数越高,则保险经营的稳定程度越低。一般认为稳定系数的取值在,0.1 0.2,之间是合适的,因此,,0.058,的稳定系数很低,保险经营的稳定程度很高。,有了平均损失率和稳定系数,就可以计算出纯费率。,91,(二)附加费率的计算,附加保险费率与营业费用密切相关。附加费率的,计算公式,为:,营业费用,主要包括:,1,、按保险费的一定比例支付的业务费、企业管理费、代理手续费及缴纳的税金。,2,、支付的工资及附加费用。,3,、预期的营业利润。,除了按上述公式计算附加费率外,还可以纯保险费率的一定比例来确定,如规定附加保险费率为纯保险费率的,20%,。,财产保险的,毛保险费,是由纯保险费和附加保险费构成的,其计算公式为:,毛保险费,=,纯保险费,+,附加保险费,92,三、寿险准备金及其计提,一、保险准备金及分类,二、非寿险准备金及其计提,第二节 保险责任准备金,93,一、保险准备金及分类,保险准备金:,是指保险公司为保证其如约履行保险赔偿或给付义务而提取的、与其所承担的保险责任相对应的基金。,保险准备金实际上包括:,资本金、公积金或总准备金及其他任意准备金(在未到期责任准备金和赔付准备金之外的准备金)以及未分配的利润等。,从保险准备金的构成来看,按不同的依据有不同的划分方法(见下一张,PPT,),。,94,1,、按要求提存的约束力不同,(1),保险公司根据有关法律规定必须提取的准备金,如未到期责任准备金、未决赔款准备金,其计算办法由法律规定;,(2),保险公司根据公司章程或主管机关指定提存的准备金,如保险保障基金等;,(3),保险公司任意提存的准备金。,95,2,、按准备金的性质不同,(1),属于股东所有的准备金。它实质上相当于未分配盈余,如总准备金、特别危险准备金、非常准备金、留存利润、未分配盈余等等。,(2),属于保险客户所有的准备金。一般称为业务准备金,又可细分为未到期责任准备金和赔付准备金。,(3),属于有关资产账户备抵性质的准备金。该类准备金一般用于抵消相应资产科目的部分余额,如呆账准备金对应于应收未收保费、投资损失准备金对应于投资等。,96,3,、按计提基础不同,(1),税前列支准备金。它是以保险费或赔案数为计算基础,是保险公司未了责任准备金,亦即业务准备金,它属于保险客户所有,从而从保费收入中直接计提。,(2),税后列支准备金。主要包括总准备金、特别危险准备金等,它属于公司股东或业主所有,从而只能在保险公司的税后利润分配中计提。,97,三、寿险准备金及其计提,一、保险准备金及分类,二、非寿险准备金及其计提,第二节 保险责任准备金,98,二、非寿险准备金及其计提,非寿险:,包括各种财产保险、责任保险、信用保险及短期人身保险等一切非寿险业务。,非寿险准备金:,主要包括,未决赔款准备金,(,简称赔款准备金,),和,未到期责任准备金,两种。,此外,还有,总准备金,等。本处主要介绍赔款准备金与未到期责任准备金。,99,(一)赔款准备金,赔款准备金,:,是衡量保险人某一时期内应负的赔偿责任及理赔费用的估计金额。,具体包括以下几种情况:,(1),被保险人已经提出索赔,但被保险人与保险人之间尚未对这些案件是否属于保险责任范围以内、保险赔付额应当为多少等事项达成协议,这类赔案称为未决赔案。,(2),保险人对索赔案件已经理算完毕,应赔付金额也已经确定但尚未支付,这类赔案称为已决未付赔案。,(3),保险事故已经发生但尚未报告,这类赔案称为已发生未报告赔案。,赔款准备金的计提一般有三种方法,即,个案估计法、平均值法和赔付率法,。,100,1,、个案估计法,采用这种方法的保险公司一般通过检查赔付案件登记表,就尚未解决的案件逐笔估计其所需要的赔偿金,加上少数尚未报告的赔付案件的估计金额,即为应提取的赔款准备金。,这种方法较大程度上依赖于保险公司理赔部门的经验判断,较适用于大额赔案。,101,2,、平均值法,在这种计算方法下,保险公司首先根据以往的损失数据计算出各类赔付案件的平均值,并根据其变动趋势对其加以调整,再将这一平均值乘以已报告赔案数目就能得出未决赔款额。,这一方法适用于索赔案多,且索赔金额大致相同的业务,如汽车险。,102,3,、赔付率法,在这一方法下,保险公司选择某一个时期的赔付率来估计某类业务的最终赔付数额,从估计的最终赔付额中扣除已支付的赔款和理算费用,即为未决赔款额。,用这种方法计算出来的赔款准备金,包括了已报告的损失和已发生但未报告的损失,而前面两种计算法只涉及已报告的赔案,对已发生但未报告的赔案还需另行估计,但有时赔付率法下所假定的赔付率与实际赔付率可能会有很大出入。,103,(二)未到期责任准备金,由于保险公司会计年度与保单有效期不完全一致,按照权责匹配的原则,保险公司不能把当年的保费收入全部计人损益,而应将保费在各保险责任期内进行分摊。,未到期责任准备金:,是指保险公司在年终会计决算时,把属于未到期责任部分的保费提存出来,用做将来赔偿准备的基金。,留在当年的部分属于当年的收入,称之为,已赚保费,;,转入第二年度的部分属于下一年度的收入,称之为,未赚保费,。,104,提取未到期责任准备金的,原因主要在于:,1,、保险公司对保险合同的剩余期限负有承保责任;,2,、当保险合同在到期前依法被解除时,其未到期部分的保费应退还投保人。,如果严格按照未到期责任准备金的定义进行提取,则应先计算出每份保单的未到期责任,再按未到期责任的比重求出应提留的准备金。然而这种方法尽管比较直观,但工作量太大,在实际操作中往往不易做到。因此,保险实务中一般采用以下,近似计算方法,。(见下一张,PPT,),(二)未到期责任准备金,105,1,、年平均估算法,这种计算方法较适用于一年中保费收入较稳定的保险公司。,其具体思路是:,假定保险公司各月营业量较为平均,则一年中所有签发保单的平均保险期限为,6,个月,也就是说,如为,1,年期保单,则应计提的未到期责任准备金为自留总保费收入的,1,2,;如为,3,年期保单,则第,1,年应计提的未到期责任准备金为保费收入的,5,6,,第,2,年应计提保费收入的,3,6,,第,3,年应计提保费收入的,1,6,。,106,2,、月平均估算,这种方法的思路仍与年平均估算法相同,但在精确程度上高于年平均估算法,对于年度内各月间业务量变动较大,但月度内业务量较为平稳的保险公司比较适用。,它假设一月中保单以大致相同的速度发出,则本月承保保单的有效保险期限都是,15,天,于是,一年可分为,24,个半个月,应计提的未到期责任准备金为:,107,3,、日平均估算法,这一方法的准确性无疑是最高的,它根据每张保单在下一会计期间的有效天数计算未到期责任准备金,其计算公式如下:,前两种方法的准确性有赖于计算期内保险业务的稳定性。如果保险公司的保费收入在计算期内呈递增趋势,则容易导致准备金计提不足,从而虚增了当期利润;如果保费收入呈递减趋势,则准备金提取过多,对国家而言会造成税收流失。,另外还有一点需要指出的是,财产保险中也存在保费分期缴付的现象;至于责任保险,由于保险期限比较短,且多采用追溯法,部分保费是等保险期满后根据实际损失再计收的,在以上两种情况下,未到期责任准备金已渐失其重要性。,108,三、寿险准备金及其计提,一、保险准备金及分类,二、非寿险准备金及其计提,第二节 保险责任准备金,109,(一)寿险保费缴付方式,1,、自然保费,自然保费是指以每年更新续保为条件,签订一年定期保险合同时,各年度的纯保费。,2,、趸缴纯保费,趸缴纯保费是指毛保费中扣除附加保费的部分,并在投保之日一次性缴清的纯保费,相当于未来给付支出的现值。,3,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服