资源描述
华师大_八年级数学上复习资料汇编
数的开方
1.(2013•资阳)16的平方根是
2.(2013•淄博)9的算术平方根是
3.(2013•潍坊)实数0.5的算术平方根等于
4.(2012•定西) =
5.(2013•永州)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )
A.a-c>b-c B.a+c<b+c C.ac>bc D<
6.(2013•永州)我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以及新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i2)2=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为( )
A.0 B.1 C.-1 D.i
整式的乘除
7.(2013•连云港)计算a2•a4的结果是
8.(2012•南通)计算(-x2)•x3的结果是
9.
10.(2012•滨州)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S-S=22013-1.仿照以上推理,计算出1+5+52+53+…+52012的值为( )
11.(2013•黄冈)下列计算正确的是( )
A.x4•x4=x16
B.(a3)2•a4=a9
C.(ab2)3÷(-ab)2=-ab4
D.(a6)2÷(a4)3=1
整式的乘法
1.
2
3.先化简,再求值:2(a2b+ab2)-2(a2b-1)-ab2-2,其中a=-2,b=2.
4.计算(x+y)(x2-xy+y2)的结果是
5.先阅读,再填空解题:
(x+5)(x+6)=x2+11x+30;
(x-5)(x-6)=x2-11x+30;
(x-5)(x+6)=x2+x-30;
(x+5)(x-6)=x2-x-30.
(1)观察积中的一次项系数、常数项及两因式中的常数项有何关系?答:
(2)根据以上的规律,用公式表示出来:
(3)根据规律,直接写出下列各式的结果:(a+99)(a-100)= (y-80)(y-81)=
乘法公式
1.(2005•连云港)如果2x-4的值为5,那么4x2-16x+16的值是
2.如果关于x的二次三项式x2-mx+16是一个完全平方式,那么m的值是
3.(2002•长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.
(a+b)1=a+b;
(a+b)2=a2+2ab+b2;
(a+b)3=a3+3a2b+3ab2+b3;
(a+b)4=a4+ a3b+ a2b2 ab3+b4
4.如图1和图2,有多个长方形和正方形的卡片,图1是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.根据图2,利用面积的不同表示方法,写出一个代数恒等式
5.(2010•丹东)图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )
A.(m+n)2-(m-n)2=4mn B.(m+n)2-(m2+n2)=2mn
C.(m-n)2+2mn=m2+n2 D.(m+n)(m-n)=m2-n2
6.已知x2+kxy+64y2是一个完全式,则k的值是
7.(2010•日照)由m(a+b+c)=ma+mb+mc,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3…①
我们把等式①叫做多项式乘法的立方和公式.
下列应用这个立方和公式进行的变形不正确的是( )
A.(x+4y)(x2-4xy+16y2)=x3+64y3
B.(2x+y)(4x2-2xy+y2)=8x3+y3
C.(a+1)(a2+a+1)=a3+1
D.x3+27=(x+3)(x2-3x+9)
8.(2009•内江)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )
A.(a+b)2=a2+2ab+b2
B.(a-b)2=a2-2ab+b2
C.a2-b2=(a+b)(a-b)
D.(a+2b)(a-b)=a2+ab-2b2
整式的除法
1.计算:(-6a2b5c)÷(-2ab2)=
2.(2013•梅州)化简:3a2b÷ab=
3.(2012•雅安)计算a2(a+b)(a-b)+a2b2等于( )
5.(2013•娄底)先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=
6.(2012•赤峰)阅读材料:
(1)对于任意两个数a、b的大小比较,有下面的方法:
当a-b>0时,一定有a>b;
当a-b=0时,一定有a=b;
当a-b<0时,一定有a<b.
反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.
(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:
∵a2-b2=(a+b)(a-b),a+b>0
∴(a2-b2)及(a-b)的符号相同
当a2-b2>0时,a-b>0,得a>b
当a2-b2=0时,a-b=0,得a=b
当a2-b2<0时,a-b<0,得a<b
解决下列实际问题:
(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:
①W1=
W2=
②请你分析谁用的纸面积最大.
因式分解
1.(2013•湖州)因式分解:mx2-my2=
2.(2013•张家界)下列各式中能用完全平方公式进行因式分解的是( )
A.x2+x+1 B.x2+2x-1 C.x2-1 D.x2-6x+9
3.(2012•无锡)分解因式(x-1)2-2(x-1)+1的结果是
4.(2013•贺州)把a3-2a2+a分解因式的结果是
5.(2013•恩施州)把x2y-2y2x+y3分解因式正确的是
6.(2010•自贡)把x2-y2-2y-1分解因式结果正确的是
7.(2007•中山)因式分解:1-4x2-4y2+8xy,正确的分组是
8.(2006•张家界)分解因式:x2-2xy+y2+x-y的结果是
9.(2005•四川)把多项式ac-bc+a2-b2分解因式的结果是
10.(2013•台湾)下列何者是22x7-83x6+21x5的因式?
11.(2010•台湾)下列何者为5x2+17x-12的因式
12.(2012•西藏)在实数范围内分解因式:x2-3=
13.(2012•江干区一模)因式分解x3-2x的结果是
14.(2013•衡阳)已知a+b=2,ab=1,则a2b+ab2的值为
15.(2012•宜宾)已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y的值为
全等三角形
命题及定理
1.(2013•泰州)命题“相等的角是对顶角”是 命题(填“真”或“假”).
2.(2013•佛山)命题“对顶角相等”的“条件”是
3.(2011•凉山州)把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果…,那么…”的形式:
4.(2011•溧水县一模)写出下列命题的已知、求证,并完成证明过程.
命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).
已知:如图,
求证:
证明:
全等三角形的判定条件
5.(2011•呼伦贝尔)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )
6.(2010•铜仁地区)如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )
7.(2013•云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).
(1)你添加的条件是
(2)添加条件后,请说明△ABC≌△ADE的理由.
8.(2010•顺义区)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.
求证:AD=AE.
9.(2013•珠海)如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;
求证:BC=DC.
10.泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船A在B的正前方,过B作AB的垂线,在垂线上截取任意长BD,C是BD的中点,观察者从点D沿垂直于BD的DE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是( )
尺规作图
1.(2013•兰州)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)
2.(2013•孝感)如图,已知△ABC和点O.
(1)把△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1;
(2)用直尺和圆规作△ABC的边AB,AC的垂直平分线,并标出两条垂直平分线的交点P(要求保留作图痕迹,不写作法);指出点P是△ABC的内心,外心,还是重心?
勾股定理
1.(2013•重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为
2.(2012•淮安)如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10,AB=20.求∠A的度数.
3.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的长;
(2)求△ADB的面积.
4.如图,已知∠C=90°,BC=3cm,BD=12cm,AD=13cm.△ABC的面积是6cm2.
(1)求AB的长度;
(2)求△ABD的面积.
5.如图是美国总统Garfield于1876年给出的一种验证勾股定理的办法.
(1)说一说,图中的△CDE可以由△ABC通过怎样的变换得到;
(2)你能利用这个图形验证勾股定理吗?
6.
7.(2007•义乌)李老师在及同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.
(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;
(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;
(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.
8.(2012•潍坊)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处及灯塔A的距离是 海里.
数据的收集及表示
1.(2013•玉林)如图是某手机店今年1-5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )
A.1月至2月
B.2月至3月
C.3月至4月
D.4月至5月
2.(2013•武汉)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜好的书籍,如果没有喜好的书籍,则作“其它”类统计.图(1)及图(2)是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( )
A.由这两个统计图可知喜好“科普常识”的学生有90人
B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人
C.这两个统计图不能确定喜好“小说”的人数
D.在扇形统计图中,“漫画”所在扇形的圆心角为72°
3.(2013•温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是( )
A.羽毛球
B.乒乓球
C.排球
D.篮球
4.(2013•邵阳)如图是某班学生参加兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是( )
A.棋类组
B.演唱组
C.书法组
D.美术组
5.(2013•杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是( )
A.2010~2012年杭州市每年GDP增长率相同
B.2012年杭州市的GDP比2008年翻一番
C.2010年杭州市的GDP未达到5500亿元
D.2008~2012年杭州市的GDP逐年增长
7.(2013•恩施州)如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:
2009年恩施州各县市的固定资产投资情况表:(单位:亿元)
单位
恩施市
利川县
建始县
巴东县
宜恩县
咸丰县
来凤县
鹤峰县
州直
投资额
60
28
24
23
14
16
15
5
下列结论不正确的是( )
A.2009年恩施州固定资产投资总额为200亿元
B.2009年恩施州各单位固定资产投资额的中位数是16亿元
C.2009年来凤县固定资产投资额为15亿元
D.2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°
8.(2013•资阳)体考在即,初三(1)班的课题研究小组对本年级530名学生的体育达标情况进行调查,制作出如图所示的统计图,其中1班有50人.(注:30人以上为达标,满分50分)根据统计图,解答下面问题:
(1)初三(1)班学生体育达标率和本年级其余各班学生体育达标率各是多少?
(2)若除初三(1)班外其余班级学生体育考试成绩在30--40分的有120人,请补全扇形统计图;(注:请在图中分数段所对应的圆心角的度数)
(3)如果要求全年级学生的体育达标率不低于90%,试问在本次调查中,该年级全体学生的体育达标率是否符合要求?
6
10
29
11 / 11
展开阅读全文