资源描述
第二十三讲 差倍问题
前面讲了应用线段图分析“和倍”应用题,这种方法使分析的问题详细, 形象,使我们能比较顺当地解答此类应用题.下面我们再来探讨及“和倍”问题有相像之处的“差倍”应用题。
“差倍问题”就是已知两个数的差和它们的倍数关系,求这两个数。
差倍问题的解题思路及和倍问题一样,先要在题目中找到1倍量,再画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量,然后求出另一个数,最终再写出验算和答题。
例1 甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?
分析 上图把乙班的图书本数看作1倍,甲班的图书本数是乙班的3倍,那么甲班的图书本数比乙班多2倍.又知“甲班的图书比乙班多80本”,即2倍及80本相对应,可以理解为2倍是80本,这样可以算出1倍是多少本.最终就可以求出甲, 乙班各有图书多少本。
解:①乙班的本数: 80÷(3-1)=40(本)
②甲班的本数: 40×3=120(本)
或40+80=120(本)。
验算:120-40=80(本)
120÷40=3(倍)
答:甲班有图书120本,乙班有图书40本。
例2 菜站运来的白菜是萝卜的3倍,卖出白菜1800千克,萝卜300千克,剩下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?
分析 这样想:依据“菜站运来的白莱是萝卜的3倍”应把运来的萝卜的重量看作1倍;“卖出白菜1800千克,萝卜300千克后,剩下两种蔬菜的重量正好相等”,说明运来的白菜比萝卜多1800-300=1500(千克).从上图中清晰地看到这个重量相当于萝卜重量的3-1=2(倍),这样就可以先求出运来的萝卜是多少千克,再求运来的白菜是多少千克。
解:①运来萝卜:(1800-300)÷(3-1)=750(千克)
②运来白菜: 750×3=2250(千克)
验算:
2250-1800=450(千克)(白菜剩下部分)
750-300=450(千克)(萝卜剩下部分)
答:菜站运来白菜2250千克,萝卜750千克。
例3 有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根长度是第一根长的3倍,两根绳子原来各长多少米?
分析 上图,两根绳子原来的长度一样长,但是从第一根截去12米,第二根绳子又接上14米后,第二根的长度是第一根的3倍.应当把变化后的第一根长度看作1倍,而12+14=26(米),正好相当于第一根绳子剩下的长度的2倍.所以,当从第一根截去12米后剩下的长度可以求出来了,那么第一根, 第二根原有长度也就可以求出来了。
解:①第一根截去12米剩下的长度:
(12+14)÷(3-1)=13(米)
②两根绳子原来的长度:13+12=25(米)
答:两根绳子原来各长25米。
自己进行验算,看答案是否正确.另外还可以想想,有无其他方法求两根绳子原来各有多长.
小结:解答这类题的关键是要找出两个数量的差及两个数量的倍数的差的对应关系.用除法求出1倍数,也就是较小的数,再求几倍数。
解题规律:
差÷倍数的差=1倍数(较小数)
1倍数×几倍=几倍的数(较大的数)
或:较小的数+差=较大的数。
例4 三(1)班及三(2)班原有图书数一样多.后来,三(1)班又买来新书74本,三(2)班从本班原书中拿出96本送给一年级小同学,这时,三(1)班图书是三(2)班的3倍,求两班原有图书各多少本?
分析 两个班原有图书一样多.后来三(1)班又买新书74本,即增加了74本;三(2)班从本班原有图书中取出96本送给一年级同学,则图书减少了96本.结果是一个班增加,另一个班减少,这样两个班图书就相差96+74=170(本),也就是三(1)班比三(2)班多了170本图书.又知三(1)班现有图书是三(2)班图书的3倍,可见这170本图书就相当于三(2)班所剩图书的3-1=2倍,三(2)班所剩图书本数就可以求出来了,随之原有图书本数也就求出来了(见上图)。
解:①后来三(1)班比三(2)班图书多多少本?
74+96=170(本)
②三(2)班剩下的图书是多少本?
170÷(3-1)=85(本)
③三(2)班原有图书多少本?
85+96=181(本)(两个班原有图书一样多)
综合算式:
(74+96)÷(3-1)+96
=170÷2+96
=85+96
=181(本)
验算:181+74=255(本)
181-96=85(本)
255÷85=3(倍)
答:两班原来各有图书181本。
例5 两块同样长的花布,第一块卖出31米,第二块卖出19米后,第二块是第一块的4倍,求每块花布原有多少米?
分析 已知两块花布同样长,由于第一块卖出的多,第二块卖出的少,因此第一块剩下的少,第二块剩下的多.所剩的布第二块比第一块多31-19=12(米).又知第二块所剩下的布是第一块的4倍,那么第二块比第一块多出的12米正好相当于所剩布的(4-1)倍,这样,第一块所剩布的长度即可求出(见上图)。
解:①第二块布比第一块布多剩多少米?
31-19=12(米)
②第一块布剩下多少米?
12÷(4-1)=4(米)
③第一块布原有多少米?
4+31=35(米)(两块布原有长度相等)
综合列式:
(31-19)÷(4-1)+31
=12÷3+31
=4+31
=35(米)
验算:35-31=4(米)
35-19=16(米)
16÷4=4(倍)
答:每块布原有35米长。
习题八
1.一只大象的体重比一头牛重4500千克,又知大象的重量是一头牛的10倍,一只大象和一头牛的重量各是多少千克?
2.果园里的桃树比杏树多90棵,桃树的棵数是杏树的3倍,桃树和杏树各有多少棵?
3.有两块布,第一块长74米,第二块长50米,两块布各剪去同样长的一块布后,剩下的第一块米数是第二块的3倍,问每块布各剪去多少米?
4.甲, 乙两校老师的人数相等,由于工作须要,从甲校调30人到乙校去,这时乙校老师人数正好是甲校老师人数的3倍,求甲, 乙两校原有老师各多少人?
5.两筐重量相同的苹果,从甲筐取出7千克,乙筐加入19千克,这时乙筐是甲筐苹果的3倍,问两筐原有苹果多少千克?
6.甲, 乙两个数,假如甲数加上320就等于乙数了.假如乙数加上460就等于甲数的3倍,两个数各是多少?
7.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
8.路灯队第一天比第二天多运进电线杆120根,第一天运进的根数是第二天运进根数的3倍,两天各运进电线杆多少根?
9.甲仓所存大米是乙仓的3倍,从甲仓运走8500千克,从乙仓运走500千克,两仓所剩的大米千克数相等。问各仓原存大米多少千克?
10.有两桶重量相等的油,甲桶取出12千克,乙桶加入14千克,这时乙桶油的重量是甲桶油重量的3倍。两桶油原来各有多少千克?
11.有甲乙两个人数相等的车间,由于工作须要,从甲车间调120人到乙车间,这时乙车间的人数正好是甲车间人数的4倍,求每个车间原有多少人?
12.一台彩电的价钱是一台冰箱价钱的3倍,买一台彩电比三台冰箱多用2800元。一台彩电和一台冰箱各多少元?
13.水果店运来一批桔子和香蕉,每筐的重量都是45千克,运来的桔子是香蕉的4倍,其中香蕉比桔子少30筐。水果店运来桔子, 香蕉各多少千克?
14.学校买来的白粉笔比彩色粉笔多15箱,白粉笔的箱数比彩色粉笔的4倍还多3箱,学校买来白粉笔和彩色粉笔各多少箱?
15.有大, 小两个书架,大书架上书的本数是小书架的3倍,假如从大书架上取出150本放到小书架上,这时,两个书架上书的本数相等。大, 小书架上原来各有多少本书?
16.有甲乙两筐苹果。甲筐苹果的重量是乙筐的3倍,假如从甲筐取出24千克,从乙筐取出6千克,两筐剩下的重量相等。甲, 乙两筐原来各有苹果多少千克?
17.师傅和徒弟加工同样多的一批零件,师傅加工了62个,徒弟加工了38个,这个,徒弟剩下的个数是师傅剩下个数的4倍,这一批零件有多少个?
18.有两根铁丝,第一根长18米,第二根长10米。两根铁丝用去同样长的一段后,第一根剩下的长度是第二根3倍,两根铁丝各剩下多少米?
19.姐姐和妹妹各有若干本课外书,假如姐姐给妹妹4本,姐妹俩的书同样多,假如妹妹给姐姐3本,姐姐的本数是妹妹的3倍,姐妹俩原来各有多少本?
20.果园里的桃树比杏树多90棵,桃树的棵数是杏树的3倍,桃树和杏树各有多少棵?
第 8 页
展开阅读全文