收藏 分销(赏)

江苏省无锡市高一(上)期末数学试卷含解析.doc

上传人:a199****6536 文档编号:10508692 上传时间:2025-05-31 格式:DOC 页数:14 大小:323.01KB
下载 相关 举报
江苏省无锡市高一(上)期末数学试卷含解析.doc_第1页
第1页 / 共14页
江苏省无锡市高一(上)期末数学试卷含解析.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述
江苏省无锡市高一(上)期末数学试卷 一、填空题:本大题共14小题,每小题5分,共70分). 1.(5分)设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁UA)∪B=   . 2.(5分)函数的最小正周期为   . 3.(5分)若函数f(x)=,则f(f(﹣2))=   . 4.(5分)在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m的值为   . 5.(5分)已知幂函数y=f(x)的图象过点(,),则f()=   . 6.(5分)已知向量与满足||=2,||=3,且•=﹣3,则与的夹角为   . 7.(5分)已知sin(α+π)=﹣,则sin(2α+)=   . 8.(5分)函数y=log2(3cosx+1),x∈[﹣,]的值域为   . 9.(5分)在△ABC中,E是边AC的中点,=4,若=x+y,则x+y=   . 10.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=   . 11.(5分)若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是   . 12.(5分)若=1,tan(α﹣β)=,则tanβ=   . 13.(5分)已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2,若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是   . 14.(5分)若函数f(x)=|sin(ωx+)|(ω>1)在区间[π,π]上单调递减,则实数ω的取值范围是   .   二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程. 15.(15分)已知向量=(﹣3,1),=(1,﹣2),=+k(k∈R). (1)若与向量2﹣垂直,求实数k的值; (2)若向量=(1,﹣1),且与向量k+平行,求实数k的值. 16.(15分)设α∈(0,),满足sinα+cosα=. (1)求cos(α+)的值; (2)求cos(2α+π)的值. 17.(15分)某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表: x 1 4 7 12 y 229 244 241 196 (1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=﹣x2+ax+b,y=a•bx. (2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润. 18.(15分)已知函数f(x)=()x﹣2x. (1)若f(x)=,求x的值; (2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0,]都成立,求实数m的取值范围. 19.(15分)已知t为实数,函数f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1. (1)若函数y=g(ax+1)﹣kx是偶函数,求实数k的值; (2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围; (3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为,求实数a的值. 20.(15分)已知向量=(cos,sin),=(cos,﹣sin),函数f(x)=•﹣m|+|+1,x∈[﹣,],m∈R. (1)当m=0时,求f()的值; (2)若f(x)的最小值为﹣1,求实数m的值; (3)是否存在实数m,使函数g(x)=f(x)+m2,x∈[﹣,]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.   江苏省无锡市高一(上)期末数学试卷 参考答案与试题解析   一、填空题:本大题共14小题,每小题5分,共70分). 1.(5分)设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁UA)∪B= {0,2,3} . 【解答】解:全集U={0,1,2,3},集合A={1,2},B={2,3}, 则∁UA={0,3}, 所以(∁UA)∪B={0,2,3}. 故答案为:{0,2,3}.   2.(5分)函数的最小正周期为 π . 【解答】解:函数, ∵ω=2, ∴T==π. 故答案为:π   3.(5分)若函数f(x)=,则f(f(﹣2))= 5 . 【解答】解:∵函数f(x)=, ∴f(﹣2)=(﹣2)2﹣1=3, f(f(﹣2))=f(3)=3+2=5. 故答案为:5.   4.(5分)在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m的值为 ﹣ . 【解答】解:在平面直角坐标系xOy中,∵300°角终边上一点P的坐标为(1,m), ∴tan300°=tan(360°﹣60°)=﹣tan60°=﹣=,∴m=﹣, 故答案为:﹣.   5.(5分)已知幂函数y=f(x)的图象过点(,),则f()= 4 . 【解答】解:∵幂函数y=f(x)=xα的图象过点(,), ∴=,解得:α=﹣2, 故f(x)=x﹣2,f()==4, 故答案为:4.   6.(5分)已知向量与满足||=2,||=3,且•=﹣3,则与的夹角为  . 【解答】解:∵向量与满足||=2,||=3,且•=﹣3,设与的夹角为θ, 则cosθ===﹣,∴θ=, 故答案为:.   7.(5分)已知sin(α+π)=﹣,则sin(2α+)=  . 【解答】解:∵sin(α+π)=﹣, ∴sinα=, ∴sin(2α+)=cos2α=1﹣2sin2α=1﹣=, 故答案为:.   8.(5分)函数y=log2(3cosx+1),x∈[﹣,]的值域为 [0,2] . 【解答】解:∵x∈[﹣,],∴0≤cosx≤1, ∴1≤3cosx+1≤4, ∴0≤log2(3cosx+1)≤2, 故答案为[0,2].   9.(5分)在△ABC中,E是边AC的中点,=4,若=x+y,则x+y= ﹣ . 【解答】解:∵E是边AC的中点,=4, ∴=, 所以x=﹣,y=,x+y=﹣. 故答案为:﹣.   10.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y= sin(4x+) . 【解答】解:将函数y=sin(2x﹣)的图象先向左平移, 得到函数y=sin[2(x+)﹣]=sin(2x+)的图象, 将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变), 则所得到的图象对应的函数解析式为:y=sin(4x+ ) 故答案为:sin(4x+ ).   11.(5分)若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是 (0,2) . 【解答】解:∵函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内, ∴,求得0<a<2, 故答案为:(0,2).   12.(5分)若=1,tan(α﹣β)=,则tanβ=  . 【解答】解:∵═==,∴tanα=, 又tan(α﹣β)=,则tanβ=tan[α﹣(α﹣β)]===, 故答案为:.   13.(5分)已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2,若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是 [﹣2﹣2,﹣2] . 【解答】解:如x<0,则﹣x>0, ∵当x>0时,f(x)=4x﹣x2, ∴当﹣x>0时,f(﹣x)=﹣4x+x2, ∵函数f(x)是奇函数, ∴f(0)=0,且f(﹣x)=﹣4x+x2=﹣f(x), 则f(x)=4x+x2,x<0, 则函数f(x)=, 则当x>0,f(x)=4x﹣x2=﹣(x﹣2)2+4≤4, 当x<0,f(x)=4x+x2=(x+2)2﹣4≥﹣4, 当x<0时,由4x+x2=4,即x2+4x﹣4=0得x==﹣2﹣2,(正值舍掉), 若函数f(x)在区间[t,4]上的值域为[﹣4,4], 则﹣2﹣2≤t≤﹣2, 即实数t的取值范围是[﹣2﹣2,﹣2], 故答案为:[﹣2﹣2,﹣2]   14.(5分)若函数f(x)=|sin(ωx+)|(ω>1)在区间[π,π]上单调递减,则实数ω的取值范围是 [,] . 【解答】解:∵函数f(x)=|sin(ωx+)|(ω>0)在[π,π]上单调递减, ∴T=≥,即ω≤2. ∵ω>0,根据函数y=|sinx|的周期为π,减区间为[kπ+,kπ+π],k∈z, 由题意可得区间[π,]内的x值满足 kπ+≤ωx+≤kπ+π,k∈z, 即ω•π+≥kπ+,且ω•+≤kπ+π,k∈z. 解得k+≤ω≤(k+),k∈z. 求得:当k=0时,≤ω≤,不符合题意;当k=1时,≤ω≤;当k=2时,≤ω≤,不符合题意. 综上可得,≤ω≤, 故答案为:[,].   二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程. 15.(15分)已知向量=(﹣3,1),=(1,﹣2),=+k(k∈R). (1)若与向量2﹣垂直,求实数k的值; (2)若向量=(1,﹣1),且与向量k+平行,求实数k的值. 【解答】解:(1)=+k=(﹣3+k,1﹣2k),2﹣=(﹣7,4). ∵与向量2﹣垂直,∴•(2﹣)=﹣7(﹣3+k)+4(1﹣2k)=0,解得k=. (2)k+=(k+1,﹣2k﹣1),∵与向量k+平行, ∴(﹣2k﹣1)(﹣3+k)﹣(1﹣2k)(k+1)=0,解得k=.   16.(15分)设α∈(0,),满足sinα+cosα=. (1)求cos(α+)的值; (2)求cos(2α+π)的值. 【解答】解:(1)∵α∈(0,),满足sinα+cosα==2sin(α+),∴sin(α+)=. ∴cos(α+)==. (2)∵cos(2α+)=2﹣1=,sin(2α+)=2sin(α+) cos(α+)=2••=, ∴cos(2α+π)=cos[(2α+)+]=cos(2α+)cos﹣sin(2α+)sin=﹣=.   17.(15分)某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表: x 1 4 7 12 y 229 244 241 196 (1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=﹣x2+ax+b,y=a•bx. (2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润. 【解答】解:(1)由题目中的数据知,描述每月利润y(单位:万元)与相应月份数x的变化关系函数不可能是常数函数,也不是单调函数; 所以,应选取二次函数y=﹣x2+ax+b进行描述; (2)将(1,229),(4,244)代入y=﹣x2+ax+b,解得a=10,b=220, ∴y=﹣x2+10x+220,1≤x≤12,x∈N+, y=﹣(x﹣5)2+245,∴x=5,ymax=245万元.   18.(15分)已知函数f(x)=()x﹣2x. (1)若f(x)=,求x的值; (2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0,]都成立,求实数m的取值范围. 【解答】解:(1)令t=2x>0,则﹣t=,解得t=﹣4(舍)或t=,…3分, 即2x=,所以x=﹣2…6分 (2)因为f(﹣x)=﹣2﹣x=2x﹣=﹣f(x), 所以f(x)是定义在R上的奇函数,…7故f(0)=0,由 f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)=0得:f(2m﹣mcosθ)<f(1+cosθ)…8分, 又f(x)=()x﹣2x在R上单调递减,…9分, 所以2m﹣mcosθ>1+cosθ对所有θ∈[0,]都成立,…10分, 所以m>,θ∈[0,],…12分, 令μ=cosθ,θ∈[0,],则μ∈[0,1], y==﹣1+,μ∈[0,1]的最大值为2,所以m的取值范围是m>2…16分   19.(15分)已知t为实数,函数f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1. (1)若函数y=g(ax+1)﹣kx是偶函数,求实数k的值; (2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围; (3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为,求实数a的值. 【解答】解:(1)∵函数y=g(ax+1)﹣kx是偶函数, ∴loga(a﹣x+1)+kx=loga(ax+1)﹣kx,对任意x∈R恒成立, ∴2kx=loga(ax+1)﹣loga(a﹣x+1)=loga()=x ∴k=, (2)由题意设h(x)=f(x)﹣g(x)=2loga(2x+t﹣2)﹣logax<0在x∈[1,4]恒成立, ∴2loga(2x+t﹣2)<logax, ∵0<a<1,x∈[1,4], ∴只需要2x+t﹣2>恒成立, 即t>﹣2x++2恒成立, ∴t>(﹣2x++2)max, 令y=﹣2x++2=﹣2()2++2=﹣2(﹣)2+,x∈[1,4], ∴(﹣2x++2)max=1, ∴t的取值范围是t>1, (3)∵t=4,0<a<1, ∴函数y=|f(x)|=|2loga(2x+2)|在(﹣1,﹣)上单调递减,在(﹣,+∞)上单调递增, ∵当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],且f(﹣)=0, ∴﹣1<m≤≤n(等号不同时取到), 令|2loga(2x+2)|=2,得x=或, 又[﹣(﹣)]﹣[(﹣)﹣]=>0, ∴﹣(﹣)>(﹣)﹣, ∴n﹣m的最小值为(﹣)﹣=, ∴a=.   20.(15分)已知向量=(cos,sin),=(cos,﹣sin),函数f(x)=•﹣m|+|+1,x∈[﹣,],m∈R. (1)当m=0时,求f()的值; (2)若f(x)的最小值为﹣1,求实数m的值; (3)是否存在实数m,使函数g(x)=f(x)+m2,x∈[﹣,]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由. 【解答】解:(1)•=(cos,sin)•(cos,﹣sin)=coscos﹣sinsin=cos(+)=cos2x, 当m=0时,f(x)=•+1=cos2x+1, 则f()=cos(2×)+1=cos+1=; (2)∵x∈[﹣,], ∴|+|===2cosx, 则f(x)=•﹣m|+|+1=cos2x﹣2mcosx+1=2cos2x﹣2mcosx, 令t=cosx,则≤t≤1, 则y=2t2﹣2mt,对称轴t=, ①当<,即m<1时, 当t=时,函数取得最小值此时最小值y=﹣m=﹣1,得m=(舍), ②当≤≤1,即m<1时, 当t=时,函数取得最小值此时最小值y=﹣=﹣1,得m=, ③当>1,即m>2时, 当t=1时,函数取得最小值此时最小值y=2﹣2m=﹣1,得m=(舍), 综上若f(x)的最小值为﹣1,则实数m=. (3)令g(x)=2cos2x﹣2mcosx+m2=0,得cosx=或, ∴方程cosx=或在x∈[﹣,]上有四个不同的实根, 则,得,则≤m<, 即实数m的取值范围是≤m<.   第14页(共14页)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服