资源描述
一、解题前的准备
1.熟记各种数字的运算关系。
如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。这是迅速准确解好数字推理题材的前提。常见的需记住的数字关系如下:
(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400
(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000
(3)质数关系:2,3,5,7,11,13,17,19,23,29......
(4)开方关系:4-2,9-3,16-4......
以上四种,特别是前两种关系,每次考试必有。所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。
二、解题方法
按数字之间的关系,可将数字推理题分为以下十种类型:
1.和差关系。又分为等差、移动求和或差两种。
(1)等差关系。这种题属于比较简单的,不经练习也能在短时间内做出。建议解这种题时,用口算。
12,20,30,42,()
127,112,97,82,()
3,4,7,12,(),28
(2)移动求和或差。从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多了也就简单了。
1,2,3,5,(),13
A 9 B 11 C 8 D7
选C。1+2=3,2+3=5,3+5=8,5+8=13
2,5,7,(),19,31,50
A 12 B 13 C 10 D11
选A
0,1,1,2,4,7,13,()
A 22 B 23 C 24 D 25
选C。注意此题为前三项之和等于下一项。一般考试中不会变态到要你求前四项之和,所以这属于移动求和或差中最难的。
5,3,2,1,1,()
A-3 B-2 C 0 D2
选C。
2.乘除关系。又分为等比、移动求积或商两种
(1)等比。从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。
8,12,18,27,(40.5)后项与前项之比为1.5。
6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3
(2)移动求积或商关系。从第三项起,每一项都是前两项之积或商。
2,5,10,50, (500)
100,50,2,25,(2/25)
3,4,6,12,36,(216) 此题稍有难度,从第三项起,第项为前两项之积除以2
1,7,8,57,(457) 后项为前两项之积+1
3.平方关系
1,4,9,16,25,(36),49
66,83,102,123,(146) 8,9,10,11,12的平方后+2
4.立方关系
1,8,27,(81),125
3,10,29,(83),127 立方后+2
0,1,2,9,(730) 有难度,后项为前项的立方+1
5.分数数列。一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案
1/2 4/3 9/4 16/5 25/6 (36/7) 分子为等比,分母为等差
2/3 1/2 2/5 1/3 (1/4) 将1/2化为2/4,1/3化为2/6,可知 下一个为2/8
6.带根号的数列。这种题难度一般也不大,掌握根号的简单运算则可。限于水平,打不出根号,无法列题。
7.质数数列
2,3,5,(7),11
4,6,10,14,22,(26) 质数数列除以2
20,22,25,30,37,(48) 后项与前项相减得质数数列。
8.双重数列。又分为三种:
(1)每两项为一组,如
1,3,3,9,5,15,7,(21) 第一与第二,第三与第四等每两项后项与前项之比为3
2,5,7,10,9,12,10,(13)每两项之差为3
1/7,14,1/21,42,1/36,72,1/52,() 两项为一组,每组的后项等于前项倒数*2
(2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。
22,39,25,38,31,37,40,36,(52)由两个数列,22,25,31,40,()和39,38,37,36组成,相互隔开,均为等差。
34,36,35,35,(36),34,37,(33) 由两个数列相隔而成,一个递增,一个递减
(3)数列中的数字带小数,其中整数部分为一个数列,小数部分为另一个数列。
2.01, 4.03, 8.04, 16.07, (32.11) 整数部分为等比,小数部分为移动求和数列。双重数列难题也较少。能看出是双重数列,题目一般已经解出。特别是前两种,当数字的个数超过7个时,为双重数列的可能性相当大。
9.组合数列。
此种数列最难。前面8种数列,单独出题几乎没有难题,也出不了难题,但8种数列关系两两组合,变态的甚至三种关系组合,就形成了比较难解的题目了。最常见的是和差关系与乘除关系组合、和差关系与平方立方关系组合。只有在熟悉前面所述8种关系的基础上,才能较好较快地解决这类题。
1,1,3,7,17,41()
A 89 B 99 C 109 D 119
选B。此为移动求和与乘除关系组合。第三项为第二项*2+第一项
65,35,17,3,()
A 1 B 2 C 0 D 4
选A。平方关系与和差关系组合,分别为8的平方+1,6的平方-1,4的平方+1,2的平方-1,下一个应为0的平方+1=1
4,6,10,18,34,()
A 50 B 64 C 66 D 68
选C。各差关系与等比关系组合。依次相减,得2,4,8,16(),可推知下一个为32,32+34=66
6,15,35,77,()
A 106 B 117 C 136 D 163
选D。等差与等比组合。前项*2+3,5,7依次得后项,得出下一个应为77*2+9=163
2,8,24,64,()
A 160 B 512 C 124 D 164
选A。此题较复杂,幂数列与等差数列组合。2=1*2的1次方,8=2*2的平方,24=3*2的3次方,64=4*2的4次方,下一个则为5*2的5次方=160
0,6,24,60,120,()
A 186 B 210 C 220 D 226
选B。和差与立方关系组合。0=1的3次方-1,6=2的3次方-2,24=3的3次方-3,60=4的3次方-4,120=5的3次方-5。
1,4,8,14,24,42,()
A 76 B 66 C 64 D68
选A。两个等差与一个等比数列组合
依次相减,得3,4,6,10,18,()
再相减,得1,2,4,8,(),此为等比数列,下一个为16,倒推可知选A。
10.其他数列。
2,6,12,20,()
A 40 B 32 C 30 D 28
选C。2=1*2,6=2*3,12=3*4,20=4*5,下一个为5*6=30
1,1,2,6,24,()
A 48 B 96 C 120 D 144
选C。后项=前项*递增数列。1=1*1,2=1*2,6=2*3,24=6*4,下一个为120=24*5
1,4,8,13,16,20,()
A20 B 25 C 27 D28
选B。每三项为一重复,依次相减得3,4,5。下个重复也为3,4,5,推知得25。
27,16,5,(),1/7
A 16 B 1 C 0 D 2
选B。依次为3的3次方,4的2次方,5的1次方,6的0次方,7的-1次方。
这些数列部分也属于组合数列,但由于与前面所讲的和差,乘除,平方等关系不同,故在此列为其他数列。这种数列一般难题也较多。
数字推理题的题型
1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b
2)各数之间的差有规律,如 1、2、5、10、17。它们之间的差为1、3、5、7,成等差数列。这些规律还有差之间成等比之类。B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3)看各数的大小组合规律,作出合理的分组。如 7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。
4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。首尾关系经常被忽略,但又是很简单的规律。B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。这组数比较巧的是都是6的倍数,容易导入歧途。
6)看大小不能看出来的,就要看数的特征了。如21、31、47、56、69、72,它们的十位数就是递增关系,如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=13 2+6+9=17 2+8+6=16 3+0+2=5,∵ 256+13=269 269+17=286 286+16=302 ∴ 下一个数为 302+5=307。
7)再复杂一点,如 0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。
8)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。
数字推理题经常不能在正常时间内完成,考试时也要抱着先易后难的态度(废话,嘿嘿)。应用题个人觉得难度和小学奥数程度差不多(本人青年志愿者时曾在某小学辅导奥数),各位感觉自己有困难的网友可以看看这方面的书,还是有很多有趣、快捷的解题方法做参考。国家公务员考试中数学计算题分值是最高的,一分一题,而且题量较大,所以很值得重视(国家公务员125题,满分100分,各题有分值差别,但如浙江省公务员一共120题,满分120分,没有分值的差别) 前几天做了Jane2004发的数字推理题后,看到论坛上有不少网友对数字推理题很是困惑,所以总结了一下经验发给大家。希望各位论坛网友能不吝赐教,在回帖中增添新的解数字推理题的技巧,给各位有需求的网友多做贡献
补充:
1)中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略 如1/2、1/6、1/3、2、6、3、1/2
2)数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉 如看到2、5、10、17,就应该想到是1、2、3、4的平方加1 如看到0、7、26、63,就要想到是1、2、3、4的立方减1 对平方数,个人觉得熟悉1~20就够了,对于立方数,熟悉1~10就够了,而且涉及到平方、立 方的数列往往数的跨度比较大,而且间距递增,且递增速度较快
3)A^2-B=C 因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来 如数列 5,10,15,85,140,7085 如数列 5, 6, 19, 17 , 344 , -55 如数列 5, 15, 10, 215,-115 这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就 考虑这个规律看看
4)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项 如数列 1, 8, 9, 64, 25,216 奇数位1、9、25 分别是1、3、5的平方 偶数位8、64、216是2、4、6的立方 先补充到这儿。。。。。。
5) 后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系 如数列:1、2、3、6、12、24 由于后面的数呈2倍关系,所以容易造成误解!
数字推理十大技巧 (2008-09-03 15:54:01)
标签:公务员考试 杂谈 分类:万象公考
备考规律一:等差数列及其变式
【例题】7,11,15,( )
A 19 B 20 C 22 D 25
【答案】 A
【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A。
(一)等差数列的变形一:
【例题】7,11,16,22,( )
A.28 B.29 C.32 D.33
【答案】 B
【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6。假设第五个与第四个数字之间的差值是X,
我们发现数值之间的差值分别为4,5,6,X。很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。即答案为B选项。
(二)等差数列的变形二:
【例题】7,11,13,14,( )
A.15 B.14.5 C.16 D.17
【答案】 B
【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1。假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,2,1,X。很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。即答案为B选项。
(三)等差数列的变形三:
【例题】7,11,6,12,( )
A.5 B.4 C.16 D.15
【答案】 A
【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是-5;第四个与第三个数字之间的差值是6。假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,-5,6,X。很明显数值之间的差值形成了一个新的等差数列,但各项之间的正负号是不同,由此可以推出X=-7,则第五个数为12+(-7)=5。即答案为A选项。
(三)等差数列的变形四:
【例题】7,11,16,10,3,11,( )
A.20 B.8 C.18 D.15
【答案】 A
【解析】这也是最后一种典型的等差数列的变形,这是目前为止难度最大的一种变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是-6,第五个与第四个数字之间的差值是-7。第六个与第五个数字之间的差值是8,假设第七个与第六个数字之间的差值是X。
总结一下我们发现数值之间的差值分别为4,5,-6,-7,8,X。很明显数值之间的差值形成了一个新的等差数列,但各项之间每“相隔两项”的正负号是不同的,由此可以推出X=9,则第七个数为11+9=20。即答案为A选项。
备考规律二:等比数列及其变式
【例题】4,8,16,32,( )
A.64 B.68 C.48 D.54
【答案】 A
【解析】这是一个典型的等比数列,即“后面的数字”除以“前面数字”所得的值等于一个常数。题中第二个数字为8,第一个数字为4,“后面的数字”是“前面数字”的2倍,观察得知第三个与第二个数字之间,第四和第三个数字之间,后项也是前项的2倍。那么在此基础上,我们对未知的一项进行推理,即32×2=64,第五项应该是64。
(一)等比数列的变形一:
【例题】4,8,24,96,( )
A.480 B.168 C.48 D.120
【答案】 A
【解析】这是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为8,第一个数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为4。假设第五个与第四个数字之间“后项”与“前项”的倍数为X。
我们发现“倍数”分别为2,3,4,X。很明显“倍数”之间形成了一个新的等差数列,由此可以推出X=5,则第五个数为96×5=480。即答案为A选项。
(二)等比数列的变形二:
【例题】4,8,32,256,( )
A.4096 B.1024 C.480 D.512
【答案】 A
【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为8,第一个数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为4;第四个与第三个数字之间“后项”与“前项”的倍数为8。假设第五个与第四个数字之间“后项”与“前项”的倍数为X。
我们发现“倍数”分别为2,4,8,X。很明显“倍数”之间形成了一个新的等比数列,由此可以推出X=16,则第五个数为256×16=4096。即答案为A选项。
(三)等比数列的变形三:
【例题】2,6,54,1428,( )
A.118098 B.77112 C.2856 D.4284
【答案】 A
【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为6,第一个数字为2,“后项”与“前项”的倍数为3,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为9;第四个与第三个数字之间“后项”与“前项”的倍数为27。假设第五个与第四个数字之间“后项”与“前项”的倍数为X
我们发现“倍数”分别为3,9,27,X。很明显“倍数”之间形成了一个新的平方数列,规律为3的一次方,3的二次方,3的三次方,则我们可以推出X为3的四次方即81,由此可以推出第五个数为1428×81=118098。即答案为A选项。
(四)等比数列的变形四:
【例题】2,-4,-12,48,( )
A.240 B.-192 C.96 D.-240
【答案】 A
【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为-4,第一个数字为2,“后项”与“前项”的倍数为-2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为-4。假设第五个与第四个数字之间“后项”与“前项”的倍数为X
我们发现“倍数”分别为-2,3,-4,X。很明显“倍数”之间形成了一个新的等差数列,但他们之间的正负号是交叉错位的,由此戴老师认为我们可以推出X=5,即第五个数为48×5=240,即答案为A选项。
备考规律三:求和相加式的数列
规律点拨:在国考中经常看到有“第一项与第二项相加等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列
【例题】56,63,119,182,()
A.301 B.245 C.63 D.364
【答案】 A
【解析】这也是一个典型的求和相加式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是56,第二项是63,两者相加等于第三项119。同理,第二项63与第三项119相加等于第182,则我们可以推敲第五项数字等于第三项119与第四项182相加的和,即第五项等于301,所以A选项正确。
备考规律四:求积相乘式的数列
规律点拨:在国考及地方公考中也经常看到有“第一项与第二项相乘等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列
【例题】3,6,18,108,()
A.1944 B.648 C.648 D.198
【答案】 A
【解析】这是一个典型的求积相乘式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是3,第二项是6,两者相乘等于第三项18。同理,第二项6与第三项18相乘等于第108,则我们可以推敲第五项数字等于第三项18与第四项108相乘的积,即第五项等于1944,所以A选项正确。
备考规律五:求商相除式数列
规律点拨:在国考及地方公考中也经常看到有“第一项除以第二项等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列
【例题】800,40,20,2,()
A.10 B.2 C.1 D.4
【答案】 A
【解析】这是一个典型的求商相除式的数列,即“第一项除以第二项等于第三项”,我们看题目中的第一项是800,第二项是40,第一项除以第二项等于第三项20。同理,第二项40除以第三项20等于第四项2,则我们可以推敲第五项数字等于第三项20除以第四项2,即第五项等于10,所以A选项正确。
备考规律六:立方数数列及其变式
【例题】8,27,64,( )
A.125 B.128 C.68 D.101
【答题】 A
【解析】这是一个典型的“立方数”的数列,即第一项是2的立方,第二项是3的立方,第三项是4的立方,同理我们推出第四项应是5的立方。所以A选项正确。
(一)“立方数”数列的变形一:
【例题】7,26,63,( )
A.124 B.128 C.125 D.101
【答案】 A
【解析】这是一个典型的“立方数”的数列,其规律是每一个立方数减去一个常数,即第一项是2的立方减去1,第二项是3的立方减去1,第三项是4的立方减去1,同理我们推出第四项应是5的立方减去1,即第五项等于124。所以A选项正确。
题目规律的延伸:既然可以是“每一个立方数减去一个常数”,戴老师认为就一定可以演变成“每一个立方数加上一个常数”。就上面那道题目而言,同样可以做一个变形:
【例题变形】9,28,65,( )
A.126 B.128 C.125 D.124
【答案】 A
【解析】这就是一个典型的“立方数”的数列变形,其规律是每一个立方数加去一个常数,即第一项是2的立方加上1,第二项是3的立方加上1,第三项是4的立方加上1,同理我们推出第四项应是5的立方加上1,即第五项等于124。所以A选项正确。
(二)“立方数”数列的变形二:
【例题】9,29,67,( )
A.129 B.128 C.125 D.126
【答案】 A
【解析】这就是一个典型的“立方数”的数列变形,其规律是每一个立方数加去一个数值,,而这个数值本身就是有一定规律的。即第一项是2的立方加上1,第二项是3的立方加上2,第三项是4的立方加上3,同理我们假设第四项应是5的立方加上X,我们看所加上的值所形成的规律是2,3,4,X,我们可以发现这是一个很明显的等差数列,即X=5,即第五项等于5的立方加上5,即第五项是129。所以A选项正确。
备考规律七:求差相减式数列
规律点拨:在国考中经常看到有“第一项减去第二项等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列
【例题】8,5,3,2,1,( )
A.1 B.0 C.-1 D.-2
【答案】 A
【解析】这题与“求和相加式的数列”有点不同的是,这题属于相减形式,即“第一项减去第二项等于第三项”。我们看第一项8与第二项5的差等于第三项3;第二项5与第三项3的差等于第三项2;第三项3与第四项2的差等于第五项1;
同理,我们推敲,第六项应该是第四项2与第五项1的差,即等于1;所以A选项正确。
备考规律八:“平方数”数列及其变式
【例题】1,4,9,16,25,( )
A.36 B.28 C.32 D.40
【答案】 A
【解析】这是一个典型的“立方数”的数列,即第一项是1的平方,第二项是2的平方,第三项是3的平方,第四项是4的平方,第五项是5的平方。同理我们推出第六项应是6的平方。所以A选项正确。
(一)“平方数”数列的变形一:
【例题】0,3,8,15,24,( )
A.35 B.28 C.32 D.40
【答案】 A
【解析】这是一个典型的“立方数”的数列,其规律是每一个平方数减去一个常数,即第一项是1的平方减去1,第二项是2的平方减去1,第三项是3的平方减去1,第四项是4的平方减去1,第五项是5的平方减去1。同理我们推出第六项应是6的平方减去1。所以A选项正确。
题目规律的延伸:既然可以是“每一个立方数减去一个常数”,戴老师认为就一定可以演变成“每一个立方数加上一个常数”。就上面那道题目而言,同样可以做一个变形:
【例题变形】2,5,10,17,26,( )
A.37 B.38 C.32 D.40
【答案】 A
【解析】这是一个典型的“平方数”的数列,其规律是每一个平方数减去一个常数,即第一项是1的平方加上1,第二项是2的平方加上1,第三项是3的平方加上1,第四项是4的平方加上1,第五项是5的平方加上1。同理我们推出第六项应是6的平方加上1。所以A选项正确。
(二)“平方数”数列的变形二:
【例题】2,6,12,20,30,( )
A.42 B.38 C.32 D.40
【答案】 A
【解析】这就是一个典型的“平方数”的数列变形,其规律是每一个立方数加去一个数值,而这个数值本身就是有一定规律的。即第一项是1的平方加上1,第二项是2的平方加上2,第三项是3的平方加上3,第四项是4的平方加上4,第五项是5的平方加上5。同理我们假设推出第六项应是6的平方加上X。而把各种数值摆出来分别是:1,2,3,4,5,X。由此我们可以得出X=6,即第六项是6的平方加上6,所以A选项正确。
备考规律九:“隔项”数列
【例题】1,4,3,9,5,16,7,( )
A.25 B.28 C.10 D.9
【答案】 A
【解析】这是一个典型的“各项”的数列。相隔的一项成为一组数列,即原数列中是由两组数列结合而成的。单数的项分别是:1,3,5,7。这是一组等差数列。而双数的项分别是4,9,16,()。这是一组“平方数”的数列,很容易我就可以得出(?)应该是5的平方,即A选项正确。
【规律点拨】这类数列无非是把两组数列“堆积”在一起而已,戴老师认为只要考生的眼睛稍微“跳动”一下,则很容易就会发现两组规律。当然还有其他更多的变形可能性。
备考规律十:混合式数列
【例题】1,4,3,8,5,16,7,32,( ),( )
A.9,64 B.9,38 C.11,64 D.36,18
【答案】 A
【解析】这是一个典型的要求考生填两个未知数字的题目。同样这也是“相隔”数列的一种延伸,但这种题型,戴老师认为考生未来还是特别留意这种题型,因为将来数字推理的不断演变,有可能出现3个数列相结合的题型,即有可能出现要求考生填写3个未知数字的题型。所以大家还是认真总结这类题型。
我们看原数列中确实也是由两组数列结合而成的。单数的项分别是:1,3,5,7,( )。很容易我们就可以得出(?)应该是9,这是一组等差数列。
而双数的项分别是4,8,16,32,(?)。这是一组“等比”的数列,很容易我们就可以得出(?)应该是32的两倍,即64。所以,A选项正确。
【例题变形】1,4,4,3,8,9,5,16,16,7,32,25,( ),( ),( )
A.9,64,36 B.9,38,32 C.11,64,30 D.36,18,38
【答案】 A
【解析】这就是将来数字推理的不断演变,有可能出现3个数列相结合的题型,即出现要求考生填写3个未知数字的题型。这里有三组数列,
首先是第一,第四,第七,第十项,第十三项组成的数列:1,3,5,7,(?), 很容易我们就可以得出(?)应该是9,这是一组等差数列。
其次是第二,第五,第八,第十一项,第十四项组成的数列:4,8,16,32,(?)。这是一组“等比”的数列,很容易我们就可以得出(?)应该是32的两倍,即64。
再次是第三,第六,第九,第十二项,第十五项组成的数列:4,9,16,25,(?),这是一组“平方数”的数列,很容易我们就可以得出(?)应该是6的平方,即36。
所以A选项正确。
备注
一、数字推理解题基本要求
熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。
自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……
自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000
质数数列: 2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)
合数数列: 4,6,8,9,10,12,14…….(注意倒序)
二、数字推理解题思路:
1 基本思路:第一反应是两项间相减,相除,平方,立方。所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。
相减,是否二级等差。
8,15,24,35,(48)
相除,如商约有规律,则为隐藏等比。
4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……
2特殊观察:
项很多,分组。三个一组,两个一组
4,3,1,12,9,3,17,5,(12) 三个一组
19,4,18,3,16,1,17,(2)
2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。
400,200,380,190,350,170,300,(130)两项差为等差数列
隔项,是否有规律
0,12,24,14,120,16(7^3-7)
数字从小到大到小,与指数有关
1,32,81,64,25,6,1,1/8
每个数都两个数以上,考虑拆分相加(相乘)法。
87,57,36,19,(1*9+1)
256,269,286,302,(302+3+0+2)
数跳得大,与次方(不是特别大),乘法(跳得很大)有关
1,2,6,42,(42^2+42)
3,7,16,107,(16*107-5)
每三项/二项相加,是否有规律。
1,2,5,20,39,(125-20-39)
21,15,34,30,51,(10^2-51)
C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)
3,5,4,21,(4^2-21),446
5,6,19,17,344,(-55)
-1,0,1,2,9,(9^3+1)
C=A^2+B及变形(数字变化较大)
1,6,7,43,(49+43)
1,2,5,27,(5+27^2)
分数,通分,使分子/分母相同,或者分子分母之间有联系。/也有考虑到等比的可能
2/3,1/3,2/9,1/6,(2/15)
3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列
1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。
3,2,7/2,12/5,(12/1) 通分,3,2 变形为3/1,6/3,则各项分子、分母差为质数数列。
64,48,36,27,81/4,(243/16)等比数列。
出现三个连续自然数,则要考虑合数数列变种的可能。
7,9,11,12,13,(12+3)
8,12,16,18,20,(12*2)
突然出现非正常的数,考虑C项等于 A项和B项之间加减乘除,或者与常数/数列的变形
2,1,7,23,83,(A*2+B*3)思路是将C化为A与B的变形,再尝试是否正确。
1,3,4,7,11,(18)
8,5,3,2,1,1,(1-1)
首尾项的关系,出现大小乱现的规律就要考虑。
3,6,4,(18),12,24 首尾相乘
10,4,3,5,4,(-2)首尾相加
旁边两项(如a1,a3)与中间项(如a2)的关系
1,4,3,-1,-4,-3,( -3―(-4) )
1/2,1/6,1/3,2,6,3,(1/2)
B项等于A项乘一个数后加减一个常数
3,5,9,17,(33)
5,6,8,12,20,(20*2-4)
如果出现从大排到小的数,可能是A项等于B项与C项之间加减乘除。
157,65,27,11,5,(11-5*2)
一个数反复出现可能是次方关系,也可能是差值关系
-1,-2,-1,2,(-7) 差值是2级等差
1,0,-1,0,7,(2^6-6^2)
1,0,1,8,9,(4^1)
除3求余题,做题没想法时,试试(亦有除5求余)
4,9,1,3,7,6,( C) A.5 B.
展开阅读全文