资源描述
2019年湘潭市中考数学试题
一、选择题(本大题共8小题,每小题有且只有一个正确答案,每小题3分,满分24分)
1.下列各数中是负数的是 ( )
A. B. C. D.
2.下列立体图形中,俯视图是三角形的是 ( )
A
B
C
D
3.今年湘潭市参加初中学业水平考试的九年级学生人数约24 000人,24 000用科学记数法表示为 ( )
A. B. C. D.
4.下列计算正确的是 ( )
A. B. C. D.
5.已知关于的一元二次方程有两个相等的实数根,则 ( )
A.4 B.2 C.1 D.
6.随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是 ( )
A.平均数是8 B.众数是11 C.中位数是2 D.极差是10
7.如图,将绕点逆时针旋转到的位置,若,则 ( )
A.45° B.40° C.35° D.30°
8.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程为 ( )
A. B.
C. D.
二、填空题(本大题共8小题,每小题3分,满分24分)
9.函数中,自变量的取值范围是 .
10.若,,则 .
11.为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是 .
12.计算: .
13.将一次函数的图象向上平移2个单位,所得图象的函数表达式为 .
14.四边形的内角和是 .
15.如图,在四边形中,若,则添加一个条件 ,能得到平行四边形.(不添加辅助线,任意添加一个符合题意的条件即可)
16.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径弦时,平分)可以求解.现已知弦米,半径等于5米的弧田,按照上述公式计算出弧田的面积为 平方米.
三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤,满分72分)
17.(6分)解不等式组,并把它的解集在数轴上表示出来.
18.(6分)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:
立方和公式:
立方差公式:
根据材料和已学知识,先化简,再求值:,其中.
19.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点A处时,海岸边N处的雷达站测得点N到点A的距离为8千米,仰角为.火箭继续直线上升到达点B处,此时海岸边N处的雷达测得B处的仰角增加,求此时火箭所在点B处与发射站点M处的距离.(结果精确到0.1千米)(参考数据:,)
20.(6分)每年5月份是心理健康宣传月,某中学开展以“关心他人,关爱自己”为主题的心理健康系列活动.为了解师生的心理健康状况,对全体2 000名师生进行了心理测评,随机抽取20名师生的测评分数进行了以下数据的整理与分析:
①数据收集:抽取的20名师生测评分数如下
85,82,94,72,78,89,96,98,84,65,
73,54,83,76,70,85,83,63,92,90.
②数据整理:将收集的数据进行分组并评价等第:
分数
人数
5
A
5
2
1
等第
A
B
C
D
E
③数据分析:绘制成不完整的扇形统计图:
④依据统计信息回答问题
(1)统计表中的A= .
(2)心理测评等第C等的师生人数所占扇形的圆心角度数为 .
(3)学校决定对E等的师生进行团队心理辅导,请你根据数据分析结果,估计有多少师生需要参加团队心理辅导?
21.(6分)如图,将沿着边翻折,得到,且.
(1)判断四边形的形状,并说明理由;
(2)若,求四边形的面积.
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
22.(6分)2018年高一新生开始,湖南全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考
(1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)
(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.
23.(8分)如图,在平面直角坐标系中,与轴的正半轴交于两点,与轴的正半轴相切于点,连接,已知半径为2,,双曲线经过圆心.
(1)求双曲线的解析式;
(2)求直线的解析式.
24.(8分)湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A、B两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2 800元,平均每天的总利润为1 280元.
(1)求该店平均每天销售这两种湘莲礼盒各多少盒?
(2)小亮调査发现,A种湘莲礼盒售价每降3元可多卖1盒.若B种湘莲礼盒的售价和销量不变,当A种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?
25.(10分)如图一,抛物线过三点
(1)求该抛物线的解析式;
(2)两点均在该抛物线上,若,求点横坐标的取值范围;
(3)如图二,过点作轴的平行线交抛物线于点,该抛物线的对称轴与轴交于点,连结,点为线段的中点,点分别为直线和上的动点,求周长的最小值.
26.(10分)如图一,在射线的一侧以为一条边作矩形,,点是线段上一动点(不与点重合),连结,过点作的垂线交射线于点,连接.
(1)求的大小;
(2)问题探究:动点在运动的过程中,
①是否能使为等腰三角形,如果能,求出线段的长度;如果不能,请说明理由.
②的大小是否改变?若不改变,请求出的大小;若改变,请说明理由.
(3)问题解决:如图二,当动点运动到的中点时,与的交点为,的中点为,求线段的长度.
展开阅读全文