资源描述
数学选修2-1圆锥曲线知识归纳
一、 复习总结:
名 称
椭 圆
双 曲 线
图 象
定 义
平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆即
当2﹥2时,轨迹是椭圆
当2=2时,轨迹是一条线段
当2﹤2时,轨迹不存在
平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线即
当2﹤2时,轨迹是双曲线
当2=2时,轨迹是两条射线
当2﹥2时,轨迹不存在
标 准
方 程
焦点在轴上时:
焦点在轴上时:
注:是根据分母的大小来判断焦点在哪一坐标轴上
焦点在轴上时:
焦点在轴上时:
常数的关 系
,
渐 近 线
焦点在轴上时:
焦点在轴上时:
抛物线:
图
形
方程
焦点
准线
二、 知识点:
椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质
1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹
2.椭圆的标准方程:, ()
3.椭圆的性质:由椭圆方程()
(1)范围: ,,椭圆落在组成的矩形中.
(2)对称性:图象关于轴对称.图象关于轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.轴、轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距.
(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点.
椭圆共有四个顶点: ,加两焦共有六个特殊点 叫椭圆的长轴,叫椭圆的短轴.长分别为.分别为椭圆的长半轴长和短半轴长,椭圆的顶点即为椭圆与对称轴的交点.
(4)离心率: 椭圆焦距与长轴长之比
椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例 椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时的特例.(识记方法)
以下4-7点要求不高,或者不要求.
4. 椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率
5.椭圆的准线方程
对于,左准线;右准线
对于,下准线;上准线
6.椭圆的焦半径公式:椭圆焦半径公式:
,
其中是离心率 其中分别是椭圆左右焦点.
焦点在轴上的椭圆的焦半径公式:
其中是离心率 其中分别是椭圆的下上焦点.
焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加
7椭圆的参数方程
以下为椭圆重要结论:(要求记忆1、2、3条,了解4、5)
1.准线到中心的距离为,焦点到对应准线的距离(焦准距)
过焦点且垂直于长轴的弦叫通经,其长度为:.
2. 椭圆两焦半径与焦距构成三角形的面积:
.
3椭圆的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点.
例:今有一个水平放置的椭圆形台球盘,点A、B是它的两个焦点,长轴长为2a,焦距为2c,当静放在点A的小球(小球的半径不计),从点A沿直线l击出,经椭圆壁反弹后再回到A,若l与椭圆长轴的夹角为锐角,则小球经过的路程是( D )
A.4b B.2(a-c) C.2(a+c) D.4a
4.椭圆的的内外部:
(1)点在椭圆的内部.
(2)点在椭圆的外部.
5.椭圆的切线方程:
(1) 椭圆上一点处的切线方程是.
(2)过椭圆外一点所引两条切线的切点弦方程是.
(3)椭圆与直线相切的条件是
.
8.双曲线的定义:平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线 即 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距
在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(两条平行线) 两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(两条射线) 双曲线的形状与两定点间距离、定差有关
9.双曲线的标准方程及特点:
(1)双曲线的标准方程有焦点在x轴上和焦点y轴上两种:
焦点在轴上时双曲线的标准方程为:(,);
焦点在轴上时双曲线的标准方程为:(,)
(2)有关系式成立,且
其中与的大小关系:可以为
10.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上
11.双曲线的几何性质:
(1)范围、对称性
由标准方程,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心.
(2)顶点
顶点:,特殊点:
实轴:长为, 叫做半实轴长 虚轴:长为,叫做虚半轴长
双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异
(3)渐近线
过双曲线的渐近线()
(4)离心率
双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围:
双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔
12.等轴双曲线
定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率
13.共渐近线的双曲线系
如果双曲线与有公共渐近线,可设为
以下14-17点要求不高,或者不要求.
14.双曲线的第二定义:
到定点F的距离与到定直线的距离之比为常数的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e是双曲线的离心率.
15.双曲线的准线方程:
对于来说,相对于左焦点对应着左准线,相对于右焦点对应着右准线;
对于来说,相对于上焦点对应着上准线;相对于下焦点对应着下准线
16.双曲线的焦半径(了解)
定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径
焦点在x轴上的双曲线的焦半径公式: (分别是左、右焦点)
焦点在y轴上的双曲线的焦半径公式: (分别是下、上焦点)
17.双曲线的焦点弦:
定义:过焦点的直线割双曲线所成的相交弦
焦点弦公式:
当双曲线焦点在x轴上时,
过左焦点与左支交于两点时:
过右焦点与右支交于两点时:
当双曲线焦点在y轴上时,
过左焦点与左支交于两点时:
过右焦点与右支交于两点时:
18.双曲线的重要结论:(识记(1)-(4)点,了解(5)点)
(1)双曲线焦点到对应准线的距离(焦准距).
(2)过焦点且垂直于实轴的弦叫通经,其长度为:.
(3)两焦半径与焦距构成三角形的面积.
(4)焦点到渐近线的距离总是.
(5)双曲线的切线方程:
(1)双曲线上一点处的切线方程是.
(2)过双曲线外一点所引两条切线的切点弦方程是.
(3)双曲线与直线相切的条件是.
19 抛物线定义:
平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线 定点F叫做抛物线的焦点,定直线叫做抛物线的准线
20.抛物线的准线方程:
(1), 焦点:,准线:
(2), 焦点:,准线:
(3), 焦点:,准线:
(4) , 焦点:,准线:
相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的,即
不同点:(1)图形关于X轴对称时,X为一次项,Y为二次项,方程右端为、左端为;图形关于Y轴对称时,X为二次项,Y为一次项,方程右端为,左端为 (2)开口方向在X轴(或Y轴)正向时,焦点在X轴(或Y轴)的正半轴上,方程右端取正号;开口在X轴(或Y轴)负向时,焦点在X轴(或Y轴)负半轴时,方程右端取负号
21.抛物线的几何性质
(1)范围
因为p>0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
(2)对称性
以-y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
(3)顶点
抛物线和它的轴的交点叫做抛物线的顶点.在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点.
(4)离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
22抛物线的焦半径公式:(画图即可)
抛物线,
抛物线,
抛物线,
抛物线,
23.直线与抛物线:
(1)位置关系:
相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点)
将代入,消去y,得到
关于x的二次方程 (*)
若,相交;,相切;,相离
综上,得:
联立,得关于x的方程
当(二次项系数为零),唯一一个公共点(交点)
当,则
若,两个公共点(交点)
,一个公共点(切点)
,无公共点 (相离)
(2)相交弦长:
弦长公式:,
(3)焦点弦公式:
抛物线, (识记)
抛物线,
抛物线,
抛物线,
(4)通径:
定义:过焦点且垂直于对称轴的相交弦 通径:
通径是所有焦点弦(经过焦点的弦简称焦点弦)中最短的弦.
(5)若已知过焦点的直线倾斜角(识记这条结论)
则
(6)常用结论:
和
和
(7) 若OA、OB是过抛物线顶点O的两条互相垂直的弦,则直线AB恒经过定点
(8) 过抛物线的焦点作一直线交抛物线于P、Q两点,则.
24.抛物线的参数方程:(t为参数)
25.提示.处理椭圆、双曲线、抛物线的弦中点问题常用点差法:
设 为曲线上不同的两点,是的中点,则可得到弦中点与两点间关系:
推导:
11
展开阅读全文