收藏 分销(赏)

2019年高考试题汇编文科数学--立体几何.doc

上传人:a199****6536 文档编号:10448397 上传时间:2025-05-28 格式:DOC 页数:19 大小:1.14MB 下载积分:8 金币
下载 相关 举报
2019年高考试题汇编文科数学--立体几何.doc_第1页
第1页 / 共19页
2019年高考试题汇编文科数学--立体几何.doc_第2页
第2页 / 共19页


点击查看更多>>
资源描述
(2019全国1文)16.已知,为平面外一点,,点到两边的距离均为,那么到平面的距离为 . 答案: 解答: 如图,过点做平面的垂线段,垂足为,则的长度即为所求,再做,由线面的垂直判定及性质定理可得出,在中,由,可得出,同理在中可得出,结合,可得出,, (2019全国1文)19.如图直四棱柱的底面是菱形,,,分别是的中点. (1)证明:平面 (2)求点到平面的距离. 答案: 见解析 解答: (1)连结相交于点,再过点作交于点,再连结,. 分别是的中点. 于是可得到,, 于是得到平面平面, 由平面,于是得到平面 (2)为中点,为菱形且 ,又为直四棱柱, ,又, ,设点到平面的距离为 由得 解得 所以点到平面的距离为 (2019全国2文)7. 设为两个平面,则的充要条件是( ) A. 内有无数条直线与平行 B. 内有两条相交直线与平行 C. 平行于同一条直线 D. 垂直于同一平面 答案:B 解析: 根据面面平行的判定定理易得答案. (2019全国2文)16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.) 答案: 26 解析: 由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解. (2019全国2文)17.如图,长方体的底面是正方形,点E在棱上,. (1) 证明:平面 (2) 若,,求四棱锥的体积. 答案: 1. 看解析 2. 看解析 解答: (1) 证明:因为面,面 ∴ 又,∴平面; (2) 设则 ,, 因为 ∴,∴ (2019全国3文)8.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则( ) A. ,且直线是相交直线 B. ,且直线是相交直线 C. ,且直线是异面直线 D. ,且直线是异面直线 【答案】B 【解析】 分析】 利用垂直关系,再结合勾股定理进而解决问题. 【详解】,为中点为中点,,共面相交,选项C,D为错.作于,连接,过作于. 连,平面平面. 平面,平面,平面, 与均为直角三角形. 设正方形边长为2,易知, . ,故选B. 【点睛】本题为立体几何中等问题,考查垂直关系,线面、线线位置关系. (2019全国3文)16.学生到工厂劳动实践,利用打印技术制作模型.如图,该模型为长方体挖去四棱锥后所得的几何体,其中为长方体的中心,分别为所在棱的中点,,打印所用原料密度为,不考虑打印损耗,制作该模型所需原料的质量为___________. 【答案】118.8 【解析】 【分析】 根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量. 【详解】由题意得,四棱锥O-EFGH的底面积为,其高为点O到底面的距离为3cm,则此四棱锥的体积为.又长方体的体积为,所以该模型体积为,其质量为. 【点睛】此题牵涉到的是3D打印新时代背景下的几何体质量,忽略问题易致误,理解题中信息联系几何体的体积和质量关系,从而利用公式求解. (2019全国3文)19.图1是由矩形和菱形组成的一个平面图形,其中, ,将其沿折起使得与重合,连结,如图2. (1)证明图2中的四点共面,且平面平面; (2)求图2中的四边形的面积. 【答案】(1)见详解;(2)4. 【解析】 【分析】 (1)因为折纸和粘合不改变矩形,和菱形内部的夹角,所以,依然成立,又因和粘在一起,所以得证.因为是平面垂线,所以易证.(2) 欲求四边形的面积,需求出所对应的高,然后乘以即可。 【详解】(1)证:,,又因为和粘在一起. ,A,C,G,D四点共面. 又. 平面BCGE,平面ABC,平面ABC平面BCGE,得证. (2)取的中点,连结.因为,平面BCGE,所以平面BCGE,故, 由已知,四边形BCGE菱形,且得,故平面DEM。 因此。 在中,DE=1,,故。 所以四边形ACGD的面积为4. 【点睛】很新颖的立体几何考题。首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的。再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法。最后将求四边形的面积考查考生的空间想象能力. (2019北京文)12.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________. 【答案】40. 【解析】 【分析】 画出三视图对应的几何体,应用割补法求几何体的体积. 【详解】在正方体中还原该几何体,如图所示 几何体的体积V=43-(2+4)×2×4=40 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算. (2019北京文)13.已知l,m是平面外的两条不同直线.给出下列三个论断: ①l⊥m;②m∥;③l⊥. 以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l⊥α,m∥α,则l⊥m. 【解析】 【分析】 将所给论断,分别作为条件、结论加以分析. 【详解】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l⊥α,m∥α,则l⊥m. 正确; (2)如果l⊥α,l⊥m,则m∥α.不正确,有可能m在平面α内; (3)如果l⊥m,m∥α,则l⊥α.不正确,有可能l与α斜交、l∥α. 【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力. (2019北京文)18.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点. (Ⅰ)求证:BD⊥平面PAC; (Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE; (Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由. 【答案】(Ⅰ)见解析; (Ⅱ)见解析; (Ⅲ)见解析. 【解析】 【分析】 (Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论; (Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直; (Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点. 【详解】(Ⅰ)证明:因为平面,所以; 因为底面是菱形,所以; 因为,平面, 所以平面. (Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以, 因为,所以; 因为平面,平面, 所以; 因为 所以平面, 平面,所以平面平面. (Ⅲ)存在点为中点时,满足平面;理由如下: 分别取的中点,连接, 在三角形中,且; 在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以; 又平面,平面,所以平面 【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力. (2019天津文)12.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】. 【解析】 【分析】 根据棱锥的结构特点,确定所求的圆柱的高和底面半径。 【详解】四棱锥的高为, 故圆柱的高为,圆柱的底面半径为, 故其体积为。 【点睛】圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半。 (2019天津文)17. 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,, (Ⅰ)设分别为的中点,求证:平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值. 【答案】(I)见解析;(II)见解析;(III). 【解析】 【分析】 (I)连接,结合平行四边形的性质,以及三角形中位线的性质,得到,利用线面平行的判定定理证得结果; (II)取棱的中点,连接,依题意,得,结合面面垂直的性质以及线面垂直的性质得到,利用线面垂直的判定定理证得结果; (III)利用线面角的平面角的定义得到为直线与平面所成的角,放在直角三角形中求得结果. 【详解】(I)证明:连接,易知,, 又由,故, 又因为平面,平面, 所以平面. (II)证明:取棱的中点,连接,依题意,得, 又因为平面平面,平面平面, 所以平面,又平面,故, 又已知,, 所以平面. (III)解:连接,由(II)中平面, 可知为直线与平面所成的角. 因为为等边三角形,且为的中点, 所以,又, 在中,, 所以,直线与平面所成角的正弦值为. 【点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力和推理能力. (2019上海)17.如图,在正三棱锥中,. (1)若的中点为,的中点为,求与的夹角; (2)求的体积. 【解答】解:(1),分别为,的中点,, 则为与所成角, 在中,由,, 可得, 与的夹角为; (2)过作底面垂线,垂直为,则为底面三角形的中心, 连接并延长,交于,则,. . . (2019江苏)9.如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是_____. 【答案】10 【解析】 【分析】 由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体的体积为120, 所以, 因为为的中点, 所以, 由长方体的性质知底面, 所以是三棱锥的底面上的高, 所以三棱锥的体积. 【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题. (2019江苏)12.如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若,则的值是_____. 【答案】 【解析】 【分析】 由题意将原问题转化为基底的数量积,然后利用几何性质可得比值. 【详解】如图,过点D作DF//CE,交AB于点F,由BE=2EA,D为BC中点,知BF=FE=EA,AO=OD. , 得即故. 【点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题. (2019江苏)16.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC. 求证:(1)A1B1∥平面DEC1; (2)BE⊥C1E. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】 (1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论; (2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可. 【详解】(1)因为D,E分别为BC,AC的中点, 所以ED∥AB. 在直三棱柱ABC-A1B1C1中,AB∥A1B1, 所以A1B1∥ED. 又因为ED⊂平面DEC1,A1B1平面DEC1, 所以A1B1∥平面DEC1. (2)因为AB=BC,E为AC的中点,所以BE⊥AC. 因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC. 又因为BE⊂平面ABC,所以CC1⊥BE. 因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C, 所以BE⊥平面A1ACC1. 因为C1E⊂平面A1ACC1,所以BE⊥C1E. 【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力. (2019浙江)4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式,其中是柱体的底面积,是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( ) A. 158 B. 162 C. 182 D. 32 【答案】B 【解析】 【分析】 本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查. 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算. (2019浙江)8.设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( ) A. B. C. D. 【答案】B 【解析】 【分析】 本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半. 【详解】方法1:如图为中点,在底面的投影为,则在底面投影在线段上,过作垂直,易得,过作交于,过作,交于,则,则,即,,即,综上所述,答案为B. 方法2:由最小角定理,记的平面角为(显然) 由最大角定理,故选B. 法2:(特殊位置)取为正四面体,为中点,易得 ,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. (2019浙江)14.中,,,,点在线段上,若,则____;________. 【答案】 (1). (2). 【解析】 【分析】 本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.通过引入,在、中应用正弦定理,建立方程,进而得解.. 【详解】在中,正弦定理有:,而, ,,所以. 【点睛】解答解三角形问题,要注意充分利用图形特征. (2019浙江)19.如图,已知三棱柱,平面平面,,分别是的中点. (1)证明:; (2)求直线与平面所成角的余弦值. 【答案】(1)证明见解析;(2). 【解析】 【分析】 (1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直; (2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值. 【详解】(1)如图所示,连结, 等边中,,则, 平面ABC⊥平面,且平面ABC∩平面, 由面面垂直的性质定理可得:平面,故, 由三棱柱的性质可知,而,故,且, 由线面垂直的判定定理可得:平面, 结合⊆平面,故. (2)在底面ABC内作EH⊥AC,以点E为坐标原点,EH,EC,方向分别为x,y,z轴正方向建立空间直角坐标系. 设,则,,, 据此可得:, 由可得点的坐标为, 利用中点坐标公式可得:,由于, 故直线EF的方向向量为: 设平面的法向量为,则: , 据此可得平面的一个法向量为, 此时, 设直线EF与平面所成角为,则. 【点睛】本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 19 / 19
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服