收藏 分销(赏)

初一上册数学总复习资料.doc

上传人:丰**** 文档编号:10349907 上传时间:2025-05-23 格式:DOC 页数:8 大小:100.55KB
下载 相关 举报
初一上册数学总复习资料.doc_第1页
第1页 / 共8页
初一上册数学总复习资料.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述
初一数学科总复习 第一章 有理数 一、  知识要点 本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。 基础知识: 1、正数(position number):大于0的数叫做正数。 2、负数(negation number):在正数前面加上负号“-”的数叫做负数。 3、0既不是正数也不是负数。 4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。 5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。 数轴满足以下要求: (1) 在直线上任取一个点表示数0,这个点叫做原点(origin); (2) 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向; (3) 选取适当的长度为单位长度。 6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。 7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。 由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。 8、有理数加法法则 (1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0. (3)一个数同0相加,仍得这个数。 加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。 加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。 表达式:(a+b)+c=a+(b+c) 9、有理数减法法则 减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b) 10、有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数同0相乘,都得0. 乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc) 乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。 表达式:a(b+c)=ab+ac 11、倒数 1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。 12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0. 13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(base number),n叫做指数(exponent)。 根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。 14、有理数的混合运算顺序 (1)“先乘方,再乘除,最后加减”的顺序进行; (2)同级运算,从左到右进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。 15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0<a<10),n是正整数)。 16、近似数(approximate number): 17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。 第二章 整式的加减总复习 【知识点定义】 1、单项式 对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式. 2、系数 单项式中的数字因数叫做这个单项式的系数. 3、单项式的次数 一个单项式中,所有字母的指数的和叫做这个单项式的次数. 4、多项式 几个单项式的和叫做多项式. 5、多项式的项 在多项式中,每个单项式叫做多项式的项. -6是常数项. 6、常数项 多项式中,不含字母的项叫做常数项. 7、多项式的次数 多项式里,次数最高的项的次数,就是这个多项式的次数. 8、降幂排列 把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列. 9、升幂排列 把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列. 10、整式 单项式和多项式统称整式。 11、同类项 所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项. 12、合并同类项 把多项式中的同类项合并成一项,叫做合并同类项. 合并同类项的法则是: 同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 13、去括号法则 括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号; 括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号. 例:a+(b-2c)-(e-2d)=a+b-2c-e+2d 14、添括号法则 添括号后,括号前面是“+”号,括到括号里的各项都不变符号;   添括号后,括号前面是“-”号,括到括号里的各项都改变符号.   例:m+2x-y+z-5=m+(2x-y)-(-z+5) 15、整式的加减 整式加减的一般步骤:   1.如果遇到括号,按去括号法则先去括号;   2.合并同类项. 16、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形. 第三章《一元一次方程》综合复习指导 【知识点归纳】 一、方程的有关概念 1.方程:含有未知数的等式就叫做方程. 2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程. 3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. 注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论. 二、等式的性质     等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c (2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么= 三、移项法则:把等式一边的某项变号后移到另一边,叫做移项. 四、去括号法则 1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同. 2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变. 五、解方程的一般步骤 1、 去分母(方程两边同乘各分母的最小公倍数) 2、去括号(按去括号法则和分配律) 3、 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号) 4、合并(把方程化成ax = b (a≠0)形式) 5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=). 六、用方程思想解决实际问题的一般步骤 1、 审:审题,分析题中已知什么,求什么,明确各数量之间的关系. 2.、设:设未知数(可分直接设法,间接设法) 3、 列:根据题意列方程. 4、 解:解出所列方程. 5、 检:检验所求的解是否符合题意. 6、 答:写出答案(有单位要注明答案) 七、有关常用应用类型题及各量之间的关系 1、 和、差、倍、分问题: (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现. (2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现. 2、 等积变形问题: “等积变形”是以形状改变而体积不变为前提.常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积. 3、劳力调配问题: 这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变; (3)只有调出没有调入,调出部分变化,其余不变 4、 数字问题 (1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c. (2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示. 5、工程问题: 工程问题中的三个量及其关系为:工作总量=工作效率×工作时间 6、行程问题:   (1)行程问题中的三个基本量及其关系: 路程=速度×时间.   (2)基本类型有     ① 相遇问题;     ② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题. 7、商品销售问题 有关关系式: 商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 商品利润率=商品利润/商品进价 商品售价=商品标价×折扣率 8、储蓄问题 ⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税 ⑵ 利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%) 第四章 图形认识初步 【知识点归纳】 一、 多姿多彩的图形 1. 从实物中抽象出的各种图形统称为几何图形。 2. 点、线、面、体 A. 点:线和线相交的地方。 B. 线:面和面相交的地方,线可分为直线、射线、线段 C. 体:正方体、长方体、圆柱、球等都是几何体,几何体简称体。 D. 面:包围着体的是面,面可分为平的面、曲的面。 二、 直线、射线、线段 1.两点确定一条直线 2.当两条不同的直线有一个公共点时,我们就称这两条直线相交, 这个公共点叫做它们的交点。 3. 两点之间,线段最短。 4. 连接两点间的线段的长度,叫做这两点的距离。 三、 角 1.有且只有一个角 2.把一个周角360等分,每一份就是一度的角,记做1°﹔把1度的角60等分,每一份叫做1分的角,记作1′﹔把1分的角60等分,每一份叫做1秒的角,记作1″。 3.角的运算:1周角=360°,1平角=180°,1°=60′,1′=60″ 4.角的平分线:A. 从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 B.角平分线上的一点到角的两边距离相等。 四、线段、射线和直线的联系与区别 联系:线段、射线、直线是部分与整体的关系.线段向一方无限延长形成了射线,向两个方向无限延长得到了直线.直线上的两点和它们之间的部分组成线段,直线上的一点及其一旁的部分是射线,射线反向延长得直线. 区别: 名称 延伸情况 有无长短 图示 表示法 端点个数 作图描述 备注 线段 不可延伸,有长短   线段a或线段AB(BA) 2个 连结AB A、B两点无序 射线 向一个方向延伸,无长短   射线AB 1个 以A为端点作射线AB A、B两点有序,端点在前,射线上一点在后 直线 向两个方向延伸   直线l或直线AB(BA) 无端点 过A、B两点作直线AB A、B两点无序 【典型例题】 1.下列说法中,错误的有(    ) ①射线是直线的一部分  ②画一条射线,使它的长度为3 cm  ③线段AB和线段BA是同一条线段  ④射线AB和射线BA是同一条射线  ⑤直线AB和直线BA是同一条直线 A.1个                    B.2个                 C.3个               D.4个 【解析】B  线段与直线用两个大写字母表示时,两个字母的先后顺序可前可后,而射线必须是端点字母在前. 2.在同一平面内有A,B,C,D,E五点,任三点不在同一直线上,能画________条直线. 【答案】10 3.(1)田径运动中百米比赛的跑道是线段,起点与终点是它的两个端点. (2)我们在晴朗的夜空中,有时能发现流星,它的运行轨迹可以近似看成直线. 【解析】(1)线段有两个端点. (2)直线没有端点.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服