收藏 分销(赏)

高中物理经典电学计算题总结(试题及答案).doc

上传人:精*** 文档编号:10342423 上传时间:2025-05-23 格式:DOC 页数:41 大小:606.51KB
下载 相关 举报
高中物理经典电学计算题总结(试题及答案).doc_第1页
第1页 / 共41页
高中物理经典电学计算题总结(试题及答案).doc_第2页
第2页 / 共41页
点击查看更多>>
资源描述
电学(电路)计算题   1.如图3-87所示的电路中,电源电动势=24V,内阻不计,电容C=12μF,R1=10Ω,R3=60Ω,R4=20Ω,R5=40Ω,电流表G的示数为零,此时电容器所带电量Q=7.2×10-5C,求电阻R2的阻值? 图3-87  2.如图3-88中电路的各元件值为:R1=R2=10Ω,R3=R4=20Ω,C=300μF,电源电动势=6V,内阻不计,单刀双掷开关S开始时接通触点2,求: 图3-88  (1)当开关S从触点2改接触点1,且电路稳定后,电容C所带电量.  (2)若开关S从触点1改接触点2后,直至电流为零止,通过电阻R1的电量.  3.光滑水平面上放有如图3-89所示的用绝缘材料制成的L形滑板(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中.初始时刻,滑块与物体都静止,试问: 图3-89  (1)释放小物体,第一次与滑板A壁碰前物体的速度v1多大?  (2)若物体与A壁碰后相对水平面的速率为碰前速率的3/5,则物体在第二次跟A壁碰撞之前,滑板相对于水平面的速度v和物体相对于水平面的速度v2分别为多大?  (3)物体从开始运动到第二次碰撞前,电场力做的功为多大?(设碰撞所经历时间极短)  4.一带电粒子质量为m、带电量为q,可认为原来静止.经电压为U的电场加速后,垂直射入磁感强度为B的匀强磁场中,根据带电粒子在磁场中受力所做的运动,试导出它所形成电流的电流强度,并扼要说出各步的根据.(不计带电粒子的重力)  5.如图3-90所示,半径为r的金属球在匀强磁场中以恒定的速度v沿与磁感强度B垂直的方向运动,当达到稳定状态时,试求: 图3-90  (1)球内电场强度的大小和方向?  (2)球上怎样的两点间电势差最大?最大电势差是多少?  6.如图3-91所示,小车A的质量M=2kg,置于光滑水平面上,初速度为v0=14m/s.带正电荷q=0.2C的可视为质点的物体B,质量m=0.1kg,轻放在小车A的右端,在A、B所在的空间存在着匀强磁场,方向垂直纸面向里,磁感强度B=0.5T,物体与小车之间有摩擦力作用,设小车足够长,求 图3-91  (1)B物体的最大速度?  (2)小车A的最小速度?  (3)在此过程中系统增加的内能?(g=10m/s2)  7.把一个有孔的带正电荷的塑料小球安在弹簧的一端,弹簧的另一端固定,小球穿在一根光滑的水平绝缘杆上,如图3-92所示,弹簧与小球绝缘,弹簧质量可不计,整个装置放在水平向右的匀强电场之中,试证明:小球离开平衡位置放开后,小球的运动为简谐运动.(弹簧一直处在弹性限度内) 图3-92  8.有一个长方体形的匀强磁场和匀强电场区域,它的截面为边长L=0.20m的正方形,其电场强度为E=4×105V/m,磁感强度B=2×10-2T,磁场方向垂直纸面向里,当一束质荷比为m/q=4×10-10kg/C的正离子流以一定的速度从电磁场的正方形区域的边界中点射入如图3-93所示, 图3-93  (1)要使离子流穿过电磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?  (2)在离电磁场区域右边界0.4m处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a点,若撤去磁场,离子流击中屏上b点,求ab间距离.  9.如图3-94所示,一个初速为零的带正电的粒子经过M、N两平行板间电场加速后,从N板上的孔射出,当带电粒子到达P点时,长方形abcd区域内出现大小不变、方向垂直于纸面且方向交替变化的匀强磁场.磁感强度B=0.4T.每经t=(π/4)×10-3s,磁场方向变化一次.粒子到达P点时出现的磁场方向指向纸外,在Q处有一个静止的中性粒子,P、Q间距离s=3m.PQ直线垂直平分ab、cd.已知D=1.6m,带电粒子的荷质比为1.0×104C/kg,重力忽略不计.求 图3-94  (1)加速电压为220V时带电粒子能否与中性粒子碰撞?  (2)画出它的轨迹.  (3)能使带电粒子与中性粒子碰撞,加速电压的最大值是多少?  10.在磁感强度B=0.5T的匀强磁场中,有一个正方形金属线圈abcd,边长l=0.2m,线圈的ad边跟磁场的左侧边界重合,如图3-95所示,线圈的电阻R=0.4Ω,用外力使线圈从磁场中运动出来:一次是用力使线圈从左侧边界匀速平动移出磁场;另一次是用力使线圈以ad边为轴,匀速转动出磁场,两次所用时间都是0.1s.试分析计算两次外力对线圈做功之差 图3-95  11.如图3-96所示,在xOy平面内有许多电子(每个电子质量为m,电量为e)从坐标原点O不断地以相同大小的速度v0沿不同的方向射入第Ⅰ象限.现加上一个垂直于xOy平面的磁感强度为B的匀强磁场,要求这些电子穿过该磁场后都能平行于x轴向x轴正方向运动,试求出符合该条件的磁场的最小面积. 图3-96  12.如图3-97所示的装置,U1是加速电压,紧靠其右侧的是两块彼此平行的水平金属板,板长为l,两板间距离为d.一个质量为m、带电量为-q的质点,经加速电压加速后沿两金属板中心线以速度v0水平射入两板中,若在两水平金属板间加一电压U2,当上板为正时,带电质点恰能沿两板中心线射出;当下板为正时,带电质点则射到下板上距板的左端l/4处.为使带电质点经U1加速后,沿中心线射入两金属板,并能够从两金属之间射出,问:两水平金属板间所加电压应满足什么条件,及电压值的范围. 图3-97  13.人们利用发电机把天然存在的各种形式的能(水流能、煤等燃料的化学能)转化为电能,为了合理地利用这些能源,发电站要修建在靠近这些天然资源的地方,但用电的地方却分布很广,因此需要把电能输送到远方.某电站输送电压为U=6000V,输送功率为P=500kW,这时安装在输电线路的起点和终点的电度表一昼夜里读数相差4800kWh(即4800度电),试求  (1)输电效率和输电线的电阻  (2)若要使输电损失的功率降到输送功率的2%,电站应使用多高的电压向外输电?  14.有一种磁性加热装置,其关键部分由焊接在两个等大的金属圆环上的n根间距相等的平行金属条组成,成“鼠笼”状,如图3-98所示.每根金属条的长度为l,电阻为R,金属环的直径为D、电阻不计.图中虚线表示的空间范围内存在着磁感强度为B的匀强磁场,磁场的宽度恰好等于“鼠笼”金属条的间距,当金属环以角速度ω绕过两圆环的圆心的轴OO′旋转时,始终有一根金属条在垂直切割磁感线.“鼠笼”的转动由一台电动机带动,这套设备的效率为η,求电动机输出的机械功率. 图3-98  15.矩形线圈M、N材料相同,导线横截面积大小不同,M粗于N,M、N由同一高度自由下落,同时进入磁感强度为B的匀强场区(线圈平面与B垂直如图3-99所示),M、N同时离开磁场区,试列式推导说明. 图3-99  16.匀强电场的场强E=2.0×103Vm-1,方向水平.电场中有两个带电质点,其质量均为m=1.0×10-5kg.质点A带负电,质点B带正电,电量皆为q=1.0×10-9C.开始时,两质点位于同一等势面上,A的初速度vAo=2.0m·s-1,B的初速度vBo=1.2m·s-1,均沿场强方向.在以后的运动过程中,若用Δs表示任一时刻两质点间的水平距离,问当Δs的数值在什么范围内,可判断哪个质点在前面(规定图3-100中右方为前),当Δs的数值在什么范围内不可判断谁前谁后? 图3-100  17.如图3-101所示,两根相距为d的足够长的平行金属导轨位于水平的xy平面内,一端接有阻值为R的电阻.在x>0的一侧存在沿竖直方向的均匀磁场,磁感强度B随x的增大而增大,B=kx,式中的k是一常量,一金属直杆与金属导轨垂直,可在导轨上滑动,当t=0时位于x=0处,速度为v0,方向沿x轴的正方向.在运动过程中,有一大小可调节的外力F作用于金属杆以保持金属杆的加速度恒定,大小为a,方向沿x轴的负方向.设除外接的电阻R外,所有其它电阻都可以忽略.问: 图3-101  (1)该回路中的感应电流持续的时间多长?  (2)当金属杆的速度大小为v0/2时,回路中的感应电动势有多大?  (3)若金属杆的质量为m,施加于金属杆上的外力F与时间t的关系如何?  18.如图3-102所示,有一矩形绝缘木板放在光滑水平面上,另一质量为m、带电量为q的小物块沿木板上表面以某一初速度从A端沿水平方向滑入,木板周围空间存在着足够大、方向竖直向下的匀强电场.已知物块与木板间有摩擦,物块沿木板运动到B端恰好相对静止,若将匀强电场方向改为竖直向上,大小不变,且物块仍以原初速度沿木板上表面从A端滑入,结果物块运动到木板中点时相对静止.求: 图3-102  (1)物块所带电荷的性质;  (2)匀强电场的场强大小.  19.(1)设在磁感强度为B的匀强磁场中,垂直磁场方向放入一段长为L的通电导线,单位长度导线中有n个自由电荷,每个电荷的电量为q,每个电荷定向移动的速率为v,试用通过导线所受的安掊力等于运动电荷所受洛伦兹力的总和,论证单个运动电荷所受的洛伦兹力f=qvB. 图3-103  (2)如图3-103所示,一块宽为a、厚为h的金属导体放在磁感应强度为B的匀强磁场中,磁场方向与金属导体上下表面垂直.若金属导体中通有电流强度为I、方向自左向右的电流时,金属导体前后两表面会形成一个电势差,已知金属导体单位长度中的自由电子数目为n,问:金属导体前后表面哪一面电势高?电势差为多少?  20.某交流发电机输出功率为5×105W,输出电压为U=1.0×103V,假如输电线总电阻为R=10Ω,在输电线上损失的电功率等于输电功率的5%,用户使用的电压为U用=380V.求:  (1)画出输电线路的示意图.(在图中标明各部分电压符号)  (2)所用降压变压器的原、副线圈的匝数比是多少?(使用的变压器是理想变压器)  21.如图3-104(a)所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O、O′,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动.其速度图象如图3-104(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O处连续不断以垂直于C板方向飘入质量为m=3.2×10-21kg、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计).求 图3-104  (1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并飞出磁场边界MN?  (2)粒子从边界MN射出来的位置之间最大的距离为多少?  22.试由磁场对一段通电导线的作用力F=ILB推导洛伦兹力大小的表达式.推导过程要求写出必要的文字说明(且画出示意简图)、推导过程中每步的根据、以及式中各符号和最后结果的物理意义.  23.如图3-105所示是电饭煲的电路图,S1是一个限温开关,手动闭合,当此开关的温度达到居里点(103℃)时会自动断开,S2是一个自动温控开关,当温度低于约70℃时会自动闭合,温度高于80℃时会自动断开,红灯是加热状态时的指示灯,黄灯是保温状态时的指示灯,限流电阻R1=R2=500Ω,加热电阻丝R3=50Ω,两灯电阻不计. 图3-105  (1)根据电路分析,叙述电饭煲煮饭的全过程(包括加热和保温过程).  (2)简要回答,如果不闭合开关S1,电饭煲能将饭煮熟吗?  (3)计算加热和保温两种状态下,电饭煲的消耗功率之比.  24.如图3-106所示,在密闭的真空中,正中间开有小孔的平行金属板A、B的长度均为L,两板间距离为L/3,电源E1、E2的电动势相同,将开关S置于a端,在距A板小孔正上方l处由静止释放一质量为m、电量为q的带正电小球P(可视为质点),小球P通过上、下孔时的速度之比为∶;若将S置于b端,同时在A、B平行板间整个区域内加一垂直纸面向里的匀强磁场,磁感强度为B.在此情况下,从A板上方某处释放一个与P相同的小球Q.要使Q进入A、B板间后不与极板碰撞而能飞离电磁场区,则释放点应距A板多高?(设两板外无电磁场) 图3-106 图3-107  25.如图3-107所示,在绝缘的水平桌面上,固定着两个圆环,它们的半径相等,环面竖直、相互平行,间距是20cm,两环由均匀的电阻丝制成,电阻都是9Ω,在两环的最高点a和b之间接有一个内阻为0.5Ω的直流电源,连接导线的电阻可忽略不计,空间有竖直向上的磁感强度为3.46×10-1T的匀强磁场.一根长度等于两环间距,质量为10g,电阻为1.5Ω的均匀导体棒水平地置于两环内侧,不计与环间的磨擦,当将棒放在其两端点与两环最低点之间所夹圆弧对应的圆心角均为θ=60°时,棒刚好静止不动,试求电源的电动势(取g=10m/s2).  26. 利用学过的知识,请你设计一个方案想办法把具有相同动能的质子和α粒子分开.要说出理由和方法.  27.如图3-108所示是一个电子射线管,由阴极上发出的电子束被阳极A与阴极K间的电场加速,从阳极A上的小孔穿出的电子经过平行板电容器射向荧光屏,设A、K间的电势差为U,电子自阴极发出时的初速度可不计,电容器两极板间除有电场外,还有一均匀磁场,磁感强度大小为B,方向垂直纸面向外,极板长度为d,极板到荧光屏的距离为L,设电子电量为e,质量为m.问 图3-108  (1)电容器两极板间的电场强度为多大时,电子束不发生偏转,直射到荧光屏S上的O点;  (2)去掉两极板间电场,电子束仅在磁场力作用下向上偏转,射在荧光屏S上的D点,求D到O点的距离x.  28.如图3-109所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1kg的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面.当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程中导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V和1A,电动机的内阻r=1Ω.不计一切摩擦,g取10m/s2.求: 图3-109  (1)导体棒所达到的稳定速度是多少?  (2)导体棒从静止到达稳定速度的时间是多少?  29.如图3-110所示,一根足够长的粗金属棒MN固定放置,它的M端连一个定值电阻R,定值电阻的另一端连接在金属轴O上,另外一根长为l的金属棒ab,a端与轴O相连,b端与MN棒上的一点接触,此时ab与MN间的夹角为45°,如图所示,空间存在着方向垂直纸面向外的匀强磁场,磁感强度大小为B,现使ab棒以O为轴逆时针匀速转动半周,角速度大小为ω,转动过程中与MN棒接触良好,两金属棒及导线的电阻都可忽略不计.  (1)求出电阻R中有电流存在的时间;  (2)写出这段时间内电阻R两端的电压随时间变化的关系式;  (3)求出这段时间内流过电阻R的总电量. 图3-110 图3-111  30.如图3-111所示,不计电阻的圆环可绕O轴转动,ac、bd是过O轴的导体辐条,圆环半径R=10cm,圆环处于匀强磁场中且圆环平面与磁场垂直,磁感强度B=10T,为使圆环匀速转动时电流表示数为2A,则M与环间摩擦力的大小为多少?    31.来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流强度为1mA的细柱形质子流.已知质子电荷e=1.60×10-19C.则(1)这束质子流每秒打到靶上的质子数为多少?(2)假定分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距L和4L的两处,各取一段极短的相等长度的质子流,其中的质子数分别为n1和n2,则n1∶n2为多少?  32.由安培力公式导出运动的带电粒子在磁场中所受洛沦兹力的表达式,要求扼要说出各步的根据.(设磁感强度与电流方向垂直)  33.试根据法拉第电磁感应定律=ΔΦ/Δt,推导出导线切割磁感线(即在B⊥L,v⊥L,v⊥B条件下,如图3-109所示,导线ab沿平行导轨以速度v匀速滑动)产生感应电动势大小的表达式=BLv. 图3-109    图3-110   34.普通磁带录音机是用一个磁头来录音和放音的.磁头结构如图3-110所示,在一个环形铁芯上绕一个线圈,铁芯有个缝隙,工作时磁带就贴着这个缝隙移动.录音时,磁头线圈跟微音器相连,放音时,磁头线圈改为跟场声器相连.磁带上涂有一层磁粉,磁粉能被磁化且留下剩磁.微音器的作用是把声音的变化转化为电流的变化.扬声器的作用是把电流的变化转化为声音的变化.根据学过的知识,把普通录音机录、放音的基本原理简明扼要地写下来.  35.一带电粒子质量为m、带电量为q,认为原来静止.经电压U加速后,垂直射入磁感强度为B的匀强磁场中,根据带电粒子在磁场中受力运动,导出它形成电流的电流强度,并扼要说出各步的根据.  36.如图3-111所示,有A、B、C三个接线柱,A、B间接有内阻不计、电动势为5V的电源,手头有四个阻值完全相同的电阻,将它们适当组合,接在A、C和C、B间,构成一个回路,使A、C间电压为3V,C、B间电压为2V,试设计两种方案,分别画在(a)、(b)中. 图3-111   图3-112   37.如图3-112所示,匀强电场的电场强度为E,一带电小球质量为m,轻质悬线长为l,静止时与竖直方向成30°角.现将小球拉回竖直方向(虚线所示),然后由静止释放,求:  (1)小球带何种电荷?电量多少?  (2)小球通过原平衡位置时的速度大小?  38.用同种材料,同样粗细的导线制成的单匝圆形线圈,如图3-113所示,R1=2R2,当磁感强度以1T/s的变化率变化时,求内外线圈的电流强度之比?电流的热功率之比? 图3-113  图3-114  图3-115   39.如图3-114所示,MN和PQ为相距L=30cm的平行金属长导轨,电阻为R=0.3Ω的金属棒ab可紧贴平行导轨运动.相距d=20cm,水平放置的两平行金属板E和F分别与金属棒的a、b端相连.图中R0=0.1Ω,金属棒ac=cd=db,导轨和连线的电阻不计,整个装置处于垂直纸面向里的匀强磁场中.当金属棒ab以速率v向右匀速运动时,恰能使一带电粒子以速率v在两金属板间做匀速圆周运动.求金属棒ab匀速运动的速率v的取值范围.  40.如图3-115所示,长为L、电阻r=0.3Ω、质量m=0.1kg的金属棒CD垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R=0.5Ω的电阻,量程为0~3.0A的电流表串接在一条导轨上,量程为0~1.0V的电压表接在电阻R的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F使金属棒右移,当金属棒以v=2m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,则另一个电表未满偏.问:  (1)此满偏的电表是什么表?说明理由.  (2)拉动金属棒的外力F多大?   (3)此时撤去外力F,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R的电量.  41.如图3-116所示,Ⅰ、Ⅲ为两匀强磁场区,Ⅰ区域的磁场方向垂直纸面向里,Ⅲ区域的磁场方向垂直纸面向外,磁感强度均为B.两区域之间有宽s的区域Ⅱ,区域Ⅱ内无磁场.有一边长为L(L>s),电阻为R的正方形金属框abcd(不计重力)置于Ⅰ区域,ab边与磁场边界平行,现拉着金属框以速度v向右匀速移动.  (1)分别求出当ab边刚进入中央无磁区Ⅱ和刚进入磁场区Ⅲ时,通过ab边的电流的大小和方向.  (2)把金属框从Ⅰ区域完全拉入Ⅲ区域过程中的拉力所做的功是多少? 图3-116  图3-117  图3-118   42.在两根竖直放置且相距L=1m的足够长的光滑金属导轨MN、PQ的上端接一定值电阻,其阻值为1Ω,导轨电阻不计,现有一质量为m=0.1kg、电阻r=0.5Ω的金属棒ab垂直跨接在两导轨之间,如图3-117所示.整个装置处在垂直导轨平面的匀强磁场中,磁感强度B=0.5T,现将ab棒由静止释放(ab与导轨始终垂直且接触良好,g取10m/s2),试求:  (1)ab棒的最大速度?  (2)当ab棒的速度为3m/s时的加速度?  43.两条平行裸导体轨道c、d所在平面与水平面间夹角为θ,相距为L,轨道下端与电阻R相连,质量为m的金属棒ab垂直斜面向上,如图3-118所示,导轨和金属棒的电阻不计,上下的导轨都足够长,有一个水平方向的力垂直金属棒作用在棒上,棒的初状态速度为零.  (1)当水平力大小为F、方向向右时,金属棒ab运动的最大速率是多少?  (2)当水平力方向向左时,其大小满足什么条件,金属棒ab可能沿轨道向下运动?  (3)当水平力方向向左时,其大小使金属棒恰不脱离轨道,金属棒ab运动的最大速率是多少?  44.如图3-119,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻为r=1Ω,在线圈外接一个阻值R=4Ω的电阻,电阻的一端b跟地相接,把线圈放入一个方向垂直线圈平面向里的匀强磁场中,磁感强度随时间变化规律如图线B-t所示.求:  (1)从计时起在t=3s、t=5s时穿过线圈的磁通量是多少?  (2)a点的最高电势和最低电势各多少? 图3-119   图3-120   45.如图3-120所示,直线MN左边区域存在磁感强度为B的匀强磁场,磁场方向垂直纸面向里.由导线弯成的半径为R的圆环处在垂直于磁场的平面内,且可绕环与MN的切点O在该平面内转动.现让环以角速度ω顺时针转动,试求  (1)环在从图示位置开始转过半周的过程中,所产生的平均感应电动势大小;  (2)环从图示位置开始转过一周的过程中,感应电动势(瞬时值)大小随时间变化的表达式;  (3)图3-121是环在从图示位置开始转过一周的过程中,感应电动势(瞬时值)随时间变化的图象,其中正确的是图  . 图3-121   46.如图3-122所示,足够长的U形导体框架的宽度l=0.5m,电阻忽略不计,其所在平面与水平面成α=37°角,磁感强度B=0.8T的匀强磁场方向垂直于导体框平面,一根质量为m=0.2kg、有效电阻R=2Ω的导体棒MN垂直跨放在U形框架上.该导体棒与框架间的动摩擦因数μ=0.5,导体棒由静止开始沿架框下滑到刚开始匀速运动时,通过导体棒截面的电量共为Q=2C.求:  (1)导体棒做匀速运动时的速度;  (2)导体棒从开始下滑到刚开始匀速运动这一过程中,导体棒的有效电阻消耗的电功(sin37°=0.6,cos37°=0.8,g=10m/s2). 图3-122  图3-123  图3-124  47.一个质量为m、带电量为+q的运动粒子(不计重力),从O点处沿+y方向以初速度v0射入一个边界为矩形的匀强磁场中,磁场方向垂直于xOy平面向里,它的边界分别是y=0,y=a,x=-1.5a,x=1.5a,如图3-123所示,改变磁感强度B的大小,粒子可从磁场不同边界面射出,并且射出磁场后偏离原来速度方向的角度θ会随之改变,试讨论粒子可以从哪几个边界射出并与之对应的磁感强度B的大小及偏转角度θ各在什么范围内?   48.如图3-124所示,半径R=10cm的圆形匀强磁场区域边界跟y轴相切于坐标系原点O,磁感强度B=0.332T,方向垂直于纸面向里.在O处有一放射源,可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子,已知α粒子的质量m=6.64×10-27kg,电量q=3.2×10-19C.求:  (1)画出α粒子通过磁场空间做圆运动的圆心点轨迹,并说明作图的依据.  (2)求出α粒子通过磁场空间的最大偏转角.  (3)再以过O点并垂直于纸面的直线为轴旋转磁场区域,能使穿过磁场区且偏转角最大的α粒子射到正方向的y轴上,则圆形磁场区的直径OA至少应转过多大角度?  49.如图3-125所示,矩形平行金属板M、N,间距是板长的2/3倍,PQ为两板的对称轴线.当板间加有自M向N的匀强电场时,以某一速度自P点沿PQ飞进的带电粒子(重力不计),经时间Δt,恰能擦M板右端飞出,现用垂直纸面的匀强磁场取代电场,上述带电粒子仍以原速度沿PQ飞进磁场,恰能擦N板右端飞出,则  (1)带电粒子在板间磁场中历时多少?  (2)若把上述电场、磁场各维持原状叠加,该带电粒子进入电磁场时的速度是原速度的几倍才能沿PQ做直线运动? 图3-125  图3-126  图3-127   50.如图3-126所示,环状匀强磁场B围成的中空区域,具有束缚带电粒子作用.设环状磁场的内半径R1=10cm,外半径为R2=20cm,磁感强度B=0.1T,中空区域内有沿各个不同方向运动的α粒子,试计算能脱离磁场束缚而穿出外圆的α粒子的速度最小值,并说明其运动方向.(已知质子的荷质比q/m=108C/kg)  51.如图3-127所示,在光滑水平直轨道上有A、B两个小绝缘体,它们之间由一根长为L的轻质软线相连(图中未画出).A的质量为m,带有正电荷,电量为q;B的质量为M=4m,不带电.空间存在着方向水平向右的匀强电场,场强大小为E.开始时外力把A、B靠在一起(A的电荷不会传递给B)并保持静止.某时刻撤去外力,A将开始向右运动,直到细线被绷紧.当细线被绷紧时,两物体间将发生时间极短的相互作用,已知B开始运动时的速度等于线刚要绷紧瞬间A的速度的1/3,设整个过程中A的带电量保持不变.求:  (1)细线绷紧前瞬间A的速度v0.  (2)从B开始运动到线第二次被绷紧前的过程中,B与A是否能相碰?若能相碰,求出相碰时B的位移大小及A、B相碰前瞬间的速度;若不能相碰,求出B与A间的最短距离及线第二次被绷紧前B的位移.  52.如图3-128(a)所示,两平行金属板M、N间距离为d,板上有两个正对的小孔A和B.在两板间加如图3-128(b)所示的交变电压,t=0时,N板电势高于M板电势.这时,有一质量为m、带电量为q的正离子(重力不计),经U=U0/3的电压加速后从A孔射入两板间,经过两个周期恰从B孔射出.求交变电压周期的可能值并画出不同周期下离子在两板间运动的v-t图线. 图3-128   图3-129   53.如图3-129所示,在半径为R的绝缘圆筒内有磁感强度为B的匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板间距离为d,与电动势为的电源连接,一带电量为-q、质量为m的带电粒子,开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出.已知带电粒子与筒壁的碰撞是弹性碰撞.求:(1)筒内磁场的磁感强度大小;(2)带电粒子从A点出发至从C点射出所经历的时间.   54.如图3-130所示,在垂直xOy坐标平面方向上有足够大的匀强磁场区域,其磁感强度B=1T,一质量为m=3×10-16kg、电量为q=+1×10-8C的质点(其重力忽略不计),以v=4×106m/s速率通过坐标原点O,之后历时4π×10-8s飞经x轴上A点,试求带电质点做匀速圆周运动的圆心坐标,并在坐标系中画出轨迹示意图. 图3-130  图3-131  图3-132  55.一个质量为M的绝缘小车,静止在光滑水平面上,在小车的光滑板面上放一个质量为m、带电量为+q的带电小物体(可视为质点),小车质量与物块质量之比M∶m=7∶1,物块距小车右端挡板距离为l,小车车长为L,且L=1.5l,如图3-131所示,现沿平行车身方向加一电场强度为E的水平向右的匀强电场,带电小物块由静止开始向右运动,之后与小车右端挡板相碰,若碰后小车速度大小为碰撞前小物块速度大小的1/4,并设小物块滑动过程及其与小车相碰的过程中,小物块带电量不变.  (1)通过分析与计算说明,碰撞后滑块能否滑出小车的车身?  (2)若能滑出,求出由小物块开始运动至滑出时电场力对小物块所做的功;若不能滑出,则求出小物块从开始运动至第二次碰撞时电场力对小物块所做的功.   56.如图3-132所示,在x≥0区域内有垂直于纸面的匀强磁场.一个质量为m、电量为q的质子以速度v水平向右通过x轴上P点,最后从y轴上的M点射出,已知M点到原点O的距离为H,质子射出磁场时速度方向与y轴负方向夹角θ=30°,求:  (1)磁感强度的大小和方向.  (2)如果在y轴右方再加一个匀强电场就可使质子最终能沿y轴正方向做匀速直线运动.从质子经过P点开始计时,再经多长时间加这个匀强电场?并求电场强度的大小和方向.  57.某空间存在着一个变化的电场和一个变化的磁场,电场方向向右(如图3-133a中由B到C的方向),电场变化如图3-133b中E-t图象,磁感强度变化如图3-133c中B-t图象.在A点,从t=1s(即1s末)开始,每隔2s,有一个相同的带电粒子(重力不计)沿AB方向(垂直于BC)以速度v射出,恰都能击中C点,若=2,且粒子在AC间运动的时间小于1s,求:(1)图线上E0和B0的比值,磁感强度B的方向;(2)若第1个粒子击中C点的时刻已知为(1+Δt)s,那么第2个粒子击中C点的时刻是多少? 图3-133  58.如图3-134所示的电路中,4个电阻的阻值均为R,E为直流电源,其内阻可以不计,没有标明正负极.平行板电容器两极板间的距离为d.在平行板电容器两极板间有一质量为m、电量为q的带电小球.当开关S闭合时,带电小球静止在两极板间的中点O上.现把开关S打开,带电小球便往平行板电容器的某个极板运动,并与此极板碰撞,设在碰撞时没有机械能损失,但带电小球的电量发生变化,碰后小球带有与该极板相同性质的电荷,而且所带电量恰好刚能使它运动到平行板电容器的另一极板.求小球与电容器某个极板碰撞后所带的电荷. 图3-134  59.如图3-135甲所示,两块平行金属板,相距为d,加上如图3-135乙所示的方波形电压,电压的最大值为U,周期为T,现有一离子束,其中每个粒子的带电量为q,从与两板等距处沿与板平行的方向连续地射入,设粒子通过平行板所用的时间为T(和电压变化的周期相同),且已知所有的粒子最后都可以通过两板间的空间而打在右端的靶上,试求粒子最后打在靶上的位置范围(即与O′的最大距离和最小距离),不计重力的影响. 图3-135   60.一质量为m、带电量为q的粒子以速度v0从O点沿y轴正方向射入磁感强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面.粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向夹角为30°,如图3-136所示.带电粒子重力忽略不计.试求:  (1)圆形磁场区域的最小面积.  (2)粒子从O进入磁场区到达b点所经历的时间及b点的坐标. 图3-136   图3-137   61.如图3-137(a)所示,在坐标xOy平面的第Ⅰ象限内,有一个匀强磁场,磁感强度大小恒为B0,方向垂直于xOy平面,且随时间作周期性变化,如图3-137(b)所示,规定垂直xOy平面向里的磁场方向为正.一个质量为m、电量为q的正粒子,在t=0时刻从坐标原点以初速度v0沿x轴正方向射入,在匀强磁场中运动,运动中带电粒子只受洛沦兹力作用,经过一个磁场变化周期T(未确定)的时间,粒子到达第Ⅰ象限内的某一点P,且速度方向沿x轴正方向.  (1)若O、P连线与x轴之间的夹角为45°,则磁场变化的周期T为多大?  (2)因P点的位置随着磁场周期的变化而变动,试求P点的纵坐标的最大值为多少?  62.如图3-138所示,一个质量为m、带电量为q的正离子,在D处沿着图示的方向进入磁感强度为B的匀强磁场,此磁场方向垂直纸面向里,结果离子正好从离开A点距离为d的小孔C沿垂直于AC的方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在B处,而B离A点距离为2d(AB⊥AC),不计粒子重力,离子运动轨迹始终在纸面内.求:  (1)离子从D到B所需的时间;  (2)离子到达B处时的动能. 图3-138   图3-139   63.如图3-139所示,一带电量为q液滴在一足够大的相互垂直的匀强电场和匀强磁场中运动.已知电场强度为E,方向竖直向下,磁感强度为B,方向如图.若此液滴在垂直于磁场的平面内做半径为R的圆周运动(空气浮力和阻力忽略不计).  (1)液滴的速度大小如何?绕行方向如何?  (2)若液滴运行到轨道最低点A时,分裂成两个大小相同的液滴,其中一个液滴分裂后仍在原平面内做半径为R1=3R的圆周运动,绕行方向不变,且此圆周最低点也是A,问另一液滴将如何运动?并在图中作出其运动轨迹.  (3)若在A点水平面以下的磁感强度大小变为B′,方向不变,则要使两液滴再次相碰,B′与B之间应满足什么条件? 参考解答 1.解:电容器两端电压 UC=Q/C=6V,R4/R5=U4/(-U4),  ∴U4=8V.  若 U1=6+8=14V,则有  U1/(-U1)=R1/R2,∴R2=7.14Ω.  若U′1=8-6=2V,则有  U′/(-U′1)=R1/R2,∴R2=110Ω.   2.解:(1)接通1后,电阻R1、R2、R3、R4串联,有  I=/(R1+R2+R3+R4)=0.1A.  电容器两端电压  UC=U3+U4=I(R3+R4)=4V.  电容器带电量 Q=CUC=1.2×10-3C.  (2)开关再接通2,电容器放电,外电路分为R1、R2和R3、R4两个支路,通过两支路的电量分别为I1t和I2t,I=I1+I2;I1与I2的分配与两支路电阻成反比,通过两支路的电量Q则与电流成正比,故流经两支路的电量Q12和Q34与两支路的电阻成反比,即  Q12/Q34=(R3+R4)/(R1+R2)=40/20=2,  Q12+Q34=Q=1.2×10-3C, 所以 Q12=2Q/3=0.8×10-3C.   3.解:(1)对物体,根据动能定理,有  qEL1=(1/2)mv12,得 v1=.  (2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1′;滑板的速度为v,则  mv1=mv1′+4mv.  若v1′=(3/5)v1,则v=v1/10,因为v1′>v,不符合实际,故应取v1′=-(3/5)v1,则v=(2/5)v1=(2/5).  在物体第一次与A壁碰后到第二次与A壁碰前,物体做匀变速运动,滑板做匀速运动,在这段时间内,两者相对于水平面的位移相同.  ∴(v2+v1′)/2t=v·t,  即  v2=(7/5)v1=(7/5).  (3)电场力做功  W=(1/2)mv12+((1/2)mv22-(1/2)mv1′2)=(13/5)qEL1.   4.带电粒子经电压U加速后速度达到v,由动能定理,得qu=(1/2)mv2.  带电粒子以速度v垂直射入匀强磁场B中,要受到洛伦兹力f的作用, ∵ f⊥v,f⊥B, ∴ 带电粒子在垂直磁场方向的平面内做匀速圆周运动,洛伦兹力f就是使带电粒子做匀速圆周运动的向心力,洛伦兹力为f=qvB,根据牛顿第二定律,有   f=mv2/R,式中
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中物理

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服