收藏 分销(赏)

1112学年高中数学2.2.2反证法同步练习新人教A版选修.doc

上传人:精*** 文档编号:10316781 上传时间:2025-05-22 格式:DOC 页数:6 大小:76KB
下载 相关 举报
1112学年高中数学2.2.2反证法同步练习新人教A版选修.doc_第1页
第1页 / 共6页
1112学年高中数学2.2.2反证法同步练习新人教A版选修.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
选修2-2 2.2.2 反证法 一、选择题 1.否定结论“至多有两个解”的说法中,正确的是(  ) A.有一个解       B.有两个解 C.至少有三个解 D.至少有两个解 [答案] C [解析] 在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C. 2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为(  ) A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数 C.a、b、c都是偶数 D.a、b、c中至少有两个偶数 [答案] B [解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B. 3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是(  ) A.假设三内角都不大于60° B.假设三内角都大于60° C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60° [答案] B [解析] “至少有一个不大于”的否定是“都大于60°”.故应选B. 4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是(  ) A.假设a,b,c都是偶数 B.假设a、b,c都不是偶数 C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数 [答案] B [解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数. 5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是(  ) A.a<b B.a≤b C.a=b D.a≥b [答案] B [解析] “a>b”的否定应为“a=b或a<b”,即a≤b.故应选B. 6.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为(  ) A.一定是异面直线 B.一定是相交直线 C.不可能是平行直线 D.不可能是相交直线 [答案] C [解析] 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C. 7.设a,b,c∈(-∞,0),则三数a+,c+,b+中(  ) A.都不大于-2 B.都不小于-2 C.至少有一个不大于-2 D.至少有一个不小于-2 [答案] C [解析] ++ =++ ∵a,b,c∈(-∞,0), ∴a+=-≤-2 b+=-≤-2 c+=-≤-2 ∴++≤-6 ∴三数a+、c+、b+中至少有一个不大于-2,故应选C. 8.若P是两条异面直线l、m外的任意一点,则(  ) A.过点P有且仅有一条直线与l、m都平行 B.过点P有且仅有一条直线与l、m都垂直 C.过点P有且仅有一条直线与l、m都相交 D.过点P有且仅有一条直线与l、m都异面 [答案] B [解析] 对于A,若存在直线n,使n∥l且n∥m 则有l∥m,与l、m异面矛盾;对于C,过点P与l、m都相交的直线不一定存在,反例如图(l∥α);对于D,过点P与l、m都异面的直线不唯一. 9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是(  ) A.甲     B.乙     C.丙     D.丁 [答案] C [解析] 因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C. 10.已知x1>0,x1≠1且xn+1=(n=1,2…),试证“数列{xn}或者对任意正整数n都满足xn<xn+1,或者对任意正整数n都满足xn>xn+1”,当此题用反证法否定结论时,应为(  ) A.对任意的正整数n,都有xn=xn+1 B.存在正整数n,使xn=xn+1 C.存在正整数n,使xn≥xn+1且xn≤xn-1 D.存在正整数n,使(xn-xn-1)(xn-xn+1)≥0 [答案] D [解析] 命题的结论是“对任意正整数n,数列{xn}是递增数列或是递减数列”,其反设是“存在正整数n,使数列既不是递增数列,也不是递减数列”.故应选D. 二、填空题 11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________. [答案] 没有一个是三角形或四边形或五边形 [解析] “至少有一个”的否定是“没有一个”. 12.用反证法证明命题“a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________. [答案] a,b都不能被5整除 [解析] “至少有一个”的否定是“都不能”. 13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤: ①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立; ②所以一个三角形中不能有两个直角; ③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°. 正确顺序的序号排列为____________. [答案] ③①② [解析] 由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②. 14.用反证法证明质数有无限多个的过程如下: 假设______________.设全体质数为p1、p2、…、pn,令p=p1p2…pn+1. 显然,p不含因数p1、p2、…、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个. [答案] 质数只有有限多个 除p1、p2、…、pn之外 [解析] 由反证法的步骤可得. 三、解答题 15.已知:a+b+c>0,ab+bc+ca>0,abc>0. 求证:a>0,b>0,c>0. [证明] 用反证法: 假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数, 不妨设a<0,b<0,c>0,则由a+b+c>0, 可得c>-(a+b), 又a+b<0,∴c(a+b)<-(a+b)(a+b) ab+c(a+b)<-(a+b)(a+b)+ab 即ab+bc+ca<-a2-ab-b2 ∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0, 这与已知ab+bc+ca>0矛盾,所以假设不成立. 因此a>0,b>0,c>0成立. 16.已知a,b,c∈(0,1).求证:(1-a)b,(1-b)c,(1-c)a不能同时大于. [证明] 证法1:假设(1-a)b、(1-b)c、(1-c)a都大于.∵a、b、c都是小于1的正数,∴1-a、1-b、1-c都是正数.≥>=, 同理>,>. 三式相加,得 ++>, 即>,矛盾. 所以(1-a)b、(1-b)c、(1-c)a不能都大于. 证法2:假设三个式子同时大于,即(1-a)b>,(1-b)c>,(1-c)a>,三式相乘得 (1-a)b(1-b)c(1-c)a>3① 因为0<a<1,所以0<a(1-a)≤2=. 同理,0<b(1-b)≤,0<c(1-c)≤. 所以(1-a)a(1-b)b(1-c)c≤3.② 因为①与②矛盾,所以假设不成立,故原命题成立. 17.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R. (1)若a+b≥0,求证:f(a)+f(b)≥f(-a)+f(-b); (2)判断(1)中命题的逆命题是否成立,并证明你的结论. [解析] (1)证明:∵a+b≥0,∴a≥-b. 由已知f(x)的单调性得f(a)≥f(-b). 又a+b≥0⇒b≥-a⇒f(b)≥f(-a). 两式相加即得:f(a)+f(b)≥f(-a)+f(-b). (2)逆命题: f(a)+f(b)≥f(-a)+f(-b)⇒a+b≥0. 下面用反证法证之. 假设a+b<0,那么: ⇒f(a)+f(b)<f(-a)+f(-b). 这与已知矛盾,故只有a+b≥0.逆命题得证. 18.(2010·湖北理,20改编)已知数列{bn}的通项公式为bn=n-1.求证:数列{bn}中的任意三项不可能成等差数列. [解析] 假设数列{bn}存在三项br、bs、bt(r<s<t)按某种顺序成等差数列,由于数列{bn}是首项为,公比为的等比数列,于是有bt>bs>br,则只可能有2bs=br+bt成立. ∴2·s-1=r-1+t-1. 两边同乘3t-121-r,化简得3t-r+2t-r=2·2s-r3t-s, 由于r<s<t,所以上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾. 故数列{bn}中任意三项不可能成等差数列. - 6 -
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服