收藏 分销(赏)

九年级数学二次函数测试题.doc

上传人:人****来 文档编号:10316494 上传时间:2025-05-22 格式:DOC 页数:4 大小:190.51KB
下载 相关 举报
九年级数学二次函数测试题.doc_第1页
第1页 / 共4页
九年级数学二次函数测试题.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
20.5二次函数测试题(B) 一、选择题(每小题4分,共24分) 1.抛物线y=-3x2+2x-1的图象与坐标轴的交点情况是( ) (A)没有交点. (B)只有一个交点. (C)有且只有两个交点. (D)有且只有三个交点. 2.已知直线y=x与二次函数y=ax2-2x-1图象的一个交点的横坐标为1,则a的值为( ) (A)2. (B)1. (C)3. (D)4. 3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( ) (A)6. (B)4. (C)3. (D)1. 4.函数y=ax2+bx+c中,若a>0,b<0,c<0,则这个函数图象与x轴的交点情况是( ) (A)没有交点. (B)有两个交点,都在x轴的正半轴. (C)有两个交点,都在x轴的负半轴. (D)一个在x轴的正半轴,另一个在x轴的负半轴. 5.已知(2,5)、(4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是( ) (A)x=. (B)x=2. (C)x=4. (D)x=3. 6.已知函数y=ax2+bx+c的图象如图1所示,那么能正确反映函数y=ax+b图象的只可能是( ) 图1 二、填空题(每小题4分,共24分) 7.二次函数y=2x2-4x+5的最小值是______. 8.某二次函数的图象与x轴交于点(-1,0),(4,0),且它的形状与y=-x2形状相同.则这个二次函数的解析式为______. 9.若函数y=-x2+4的函数值y>0,则自变量x的取值范围是______. 10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下: 定价(元) 100 110 120 130 140 150 销量(个) 80 100 110 100 80 60 为获得最大利润,销售商应将该品牌电饭锅定价为 元. 11.函数y=ax2-(a-3)x+1的图象与x轴只有一个交点,那么a的值和交点坐标分别为______. 12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽,涵洞顶点O到水面的距离为,在图中的直角坐标系内,涵洞所在抛物线的解析式为________. 三、解答题(本大题共52分)图3 13.(本题8分)已知抛物线y=x2-2x-2的顶点为A,与y轴的交点为B,求过A、B两点的直线的解析式. 14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y轴左侧与x轴的交点坐标. 图4 15.(本题8分)如图4,已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,且点P到x轴的距离为2.(1)求抛物线和直线l的解析式;(2)求点Q的坐标. 16.(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元? 17.(本题10分)) 杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数. (1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式; (2)求纯收益g关于x的解析式; (3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资? 18(本题10分)如图所示,图4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之间的距离均为15m,B1B5∥A1A5,将抛物线放在图4-②所示的直角坐标系中. (1)直接写出图4-②中点B1、B3、B5的坐标; (2)求图4-②中抛物线的函数表达式; (3)求图4-①中支柱A2B2、A4B4的长度. 图4-① 图4-② 四、附加题(本题为探究题20分,不计入总分) 19、 (湘西自治州附加题,有改动)如图5,已知A(2,2),B(3,0).动点P(m,0)在线段OB上移动,过点P作直线l与x轴垂直. (1)设△OAB中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式; (2)试问是否存在点P,使直线l平分△OAB的面积?若有,求出点P的坐标;若无,请说明理由.图5 参考答案 一、1.B 2.D 3.C 4.D 5.D 6.B 二、7.3 8.y=-x2+3x+4 9.-2<x<2 10.130 11.a=0,(,0);a=1,(-1,0);a=9,(,0) 12. 三、 13.抛物线的顶点为(1,-3),点B的坐标为(0,-2).直线AB的解析式为y=-x-2 14.依题意可知抛物线经过点(1,0).于是a+2a+a2+2=0,解得a1=-1,a2=-2.当a=-1或a=-2时,求得抛物线与x轴的另一交点坐标均为(-3,0) 15.(1)依题意可知b=0,c=1,且当y=2时,ax2+1=2①,-ax+3=2②.由①、②解得a=1,x=1.故抛物线与直线的解析式分别为:y=x2+1,y=-x+3;(2)Q(-2,5) 16.设降价x元时,获得的利润为y元.则依意可得y=(45-x)(100+4x)=-4x2+80x+4500,即y=-4(x-10)2+4900.故当x=10时,y最大=4900(元) 17.(1)将(1,2)和(2,6)代入y=ax2+bx,求得a=b=1.故y=x2+x;(2)g=33x-150-y,即g=-x2+32x-150;(3)因y=-(x-16)2+106,所以设施开放后第16个月,纯收益最大.令g=0,得-x2+32x-150=0.解得x=16±,x≈16-10.3=5.7(舍去26.3).当x=5时,g<0, 当x=6时,g>0,故6个月后,能收回投资 18.(1),,;   (2)设抛物线的表达式为,   把代入得.   .   所求抛物线的表达式为:.  (3)点的横坐标为15,   的纵坐标.   ,拱高为30,   立柱.   由对称性知:. 四、 19.(1)当0≤m≤2时,S=;当2<m≤3时,S=×3×2-(3-m)(-2m+6)=-m2+6m-6.(2)若有这样的P点,使直线l平分△OAB的面积,很显然0<m<2.由于△OAB的面积等于3,故当l平分△OAB面积时,S=..解得m=.故存在这样的P点,使l平分△OAB的面积.且点P的坐标为(,0).
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服