资源描述
八年级数学因式分解辅导学案
因式分解的常用方法
多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.
一、提公因式法.:ma+mb+mc=m(a+b+c)
二、运用公式法.
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:
(1 ) (a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);
(2 ) (a±b)2 = a2±2ab+b2 ——— a2±2ab+b2=(a±b)2;
例.已知是的三边,且,则的形状是( )
A.直角三角形 B等腰三角形 C 等边三角形 D等腰直角三角形
解:
选C
练习
(1) (2) (3)(x-1)(x+4)-36
(4)(m2+n2)2-4m2n2 (5)-2a3+12a2-18a; (6)9a2(x-y)+4b2(y-x);
(7) (x+y)2+2(x+y)+1.
三、分组分解法.
(一)分组后能直接提公因式
例1、分解因式:
分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=
= 每组之间还有公因式!
=
例2、分解因式:
解法一:第一、二项为一组; 解法二:第一、四项为一组;
第三、四项为一组。 第二、三项为一组。
解:原式= 原式=
= =
= =
练习:分解因式1、 2、
(二)分组后能直接运用公式
例3、分解因式:
分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式=
=
=
例4、分解因式:
解:原式=
=
=
练习:分解因式3、 4、
四、十字相乘法.
(一)二次项系数为1的二次三项式
直接利用公式——进行分解。
特点:(1)二次项系数是1;
(2)常数项是两个数的乘积;
(3)一次项系数是常数项的两因数的和。
例5、分解因式:
分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。 1 2
解:= 1 3
= 1×2+1×3=5
用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
练习5、分解因式(1) (2)
3)
(二)二次项系数不为1的二次三项式——
条件:(1)
(2)
(3)
分解结果:=
例7、分解因式:
分析: 1 -2
3 -5
(-6)+(-5)= -11
解:=
练习7、分解因式:(1) (2)
(三)其他类型
例8、分解因式:
分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。
1 8b
1 -16b
8b+(-16b)= -8b
解:=
=
练习8、分解因式(1) (2)
例9、 例10、
1 -2y 把看作一个整体 1 -1
2 -3y 1 -2
(-3y)+(-4y)= -7y (-1)+(-2)= -3
解:原式= 解:原式=
练习9、分解因式:(1) (2)
(3) (4)
练习
一、填空题
1.分解因式: m3-4m= .
2.分解因式: x2-4y2= __ _____.
3.分解因式:=___________ ______。
4.将xn-yn分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为 .
5、若,则=_________,=__________。
二、选择题
6.下列多项式能分解因式的是( )
(A)x2-y (B)x2+1 (C)x2+y+y2 (D)x2-4x+4
7.把(x-y)2-(y-x)分解因式为( )
A.(x-y)(x-y-1) B.(y-x)(x-y-1)
C.(y-x)(y-x-1) D.(y-x)(y-x+1)
8.若k-12xy+9x2是一个完全平方式,那么k应为( )
A.2 B.4 C.2y2 D.4y2
三、把下列各式分解因式: 9.
10、 11、
12、 13、;
因式分解小结
知识总结归纳
因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。
1. 因式分解的对象是多项式;
2. 因式分解的结果一定是整式乘积的形式;
3. 分解因式,必须进行到每一个因式都不能再分解为止;
4. 公式中的字母可以表示单项式,也可以表示多项式;
5. 结果如有相同因式,应写成幂的形式;
6. 题目中没有指定数的范围,一般指在有理数范围内分解;
7. 因式分解的一般步骤是:
通常采用一“提”、二“公”、三“分”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;
中考点拨
例.在中,三边a,b,c满足
求证:
证明:
说明:此题是代数、几何的综合题,难度不大,学生应掌握这类题不能丢分。
练习 已知:a、b、c为三角形的三边,比较的大小。
:因式分解练习题精选
一、分解因式:
二.求代数式求值
1、 已知,,求 的值。
2、 若x、y互为相反数,且,求x、y的值
3、 已知,求的值
三、计算:
(1) 0.75 (3)
(3)
四、试说明:对于任意自然数n,都能被动24整除
五、若a2+2a+b2-6b+10=0,求a2-b2的值.
六、用简便方法计算:
⑴20042-2005×2003 ⑵
7
展开阅读全文