资源描述
第五章 动 量
一、冲量和动量
目的要求
复习动量和动量定理、动量守恒定律。
知识要点
1.动量:按定义,物体的质量和速度的乘积叫做动量:p=mv
⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。
⑵动量是矢量,它的方向和速度的方向相同。
2.冲量:按定义,力和力的作用时间的乘积叫做冲量:I=Ft
⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
⑶高中阶段只要求会用I=Ft计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
⑷要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。
例题分析
m
H
例1:质量为m的小球由高为H的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?
解:力的作用时间都是,力的大小依次是mg、mgcosα和mgsinα,所以它们的冲量依次是:
特别要注意,该过程中弹力虽然不做功,但对物体有冲量。
例2:一个质量是0.2kg的钢球,以2m/s的速度水平向右运动,碰到一块竖硬的大理石后被弹回,沿着同一直线以2m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?
解:取水平向右的方向为正方向,碰撞前钢球的速度v=2m/s,碰撞前钢球的动量为P=mv=0.2×2kg·m/s=0.4kg·m/s。碰撞后钢球的速度为v′=0.2m/s,碰撞后钢球的动量为
p′=m v′=-0.2×2kg·m/s=-0.4kg·m/s。
△p= p′-P=-0.4kg·m/s-0.4kg·m/s=-0.8kg·m/s,且动量变化的方向向左。
v′
v
v
v′
45º
45º
例3:一个质量是0.2kg的钢球,以2m/s的速度斜射到坚硬的大理石板上,入射的角度是45º,碰撞后被斜着弹出,弹出的角度也是45º,速度大小仍为2m/s,用作图法求出钢球动量变化大小和方向?
解:碰撞前后钢球不在同一直线运动,据平行四边形定则,以p′和P为邻边做平行四边形,则△p就等于对解线的长度,对角线的指向就表示的方向:
△p
p′
-p
45º
45º
∴
方向竖直向上。
动量是矢量,求其变化量可以用平行四边形定则:在一维情况下可首先规定一个正方向,这时求动量的变化就可以简化为代数运算了。
二、动量定理
目的要求
复习动量定理及其应用
知识要点
1.动量定理:物体所受合外力的冲量等于物体的动量变化。既I=Δp
⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。
⑶现代物理学把力定义为物体动量的变化率:(牛顿第二定律的动量形式)。
⑷动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。
2.利用动量定理定性地解释一些现象
3.利用动量定理进行定量计算
利用动量定理解题,必须按照以下几个步骤进行:
⑴明确研究对象和研究过程。研究对象可以是一个物体,也可以是几个物体组成的质点组。质点组内各物体可以是保持相对静止的,也可以是相对运动的。研究过程既可以是全过程,也可以是全过程中的某一阶段。
⑵进行受力分析。只分析研究对象以外的物体施给研究对象的力。所有外力之和为合外力。研究对象内部的相互作用力(内力)会改变系统内某一物体的动量,但不影响系统的总动量,因此不必分析内力。如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和。
⑶规定正方向。由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负。
⑷写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。
⑸根据动量定理列式求解。
例题分析
例1:以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变化是多少?
解:因为合外力就是重力,所以Δp=Ft=mgt
有了动量定理,不论是求合力的冲量还是求物体动量的变化,都有了两种可供选择的等价的方法。本题用冲量求解,比先求末动量,再求初、末动量的矢量差要方便得多。当合外力为恒力时往往用Ft来求较为简单;当合外力为变力时,在高中阶段只能用Δp来求。
例2:鸡蛋从同一高度自由下落,第一次落在地板上,鸡蛋被打破;第二次落在泡沫塑料垫上,没有被打破。这是为什么?
解:两次碰地(或碰塑料垫)瞬间鸡蛋的初速度相同,而末速度都是零也相同,所以两次碰撞过程鸡蛋的动量变化相同。根据Ft=Δp,第一次与地板作用时的接触时间短,作用力大,所以鸡蛋被打破;第二次与泡沫塑料垫作用的接触时间长,作用力小,所以鸡蛋没有被打破。(再说得准确一点应该指出:鸡蛋被打破是因为受到的压强大。鸡蛋和地板相互作用时的接触面积小而作用力大,所以压强大,鸡蛋被打破;鸡蛋和泡沫塑料垫相互作用时的接触面积大而作用力小,所以压强小,鸡蛋未被打破。)
F
例3:某同学要把压在木块下的纸抽出来。第一次他将纸迅速抽出,木块几乎不动;第二次他将纸较慢地抽出,木块反而被拉动了。这是为什么?
解:物体动量的改变不是取决于合力的大小,而是取决于合力冲量的大小。在水平方向上,第一次木块受到的是滑动摩擦力,一般来说大于第二次受到的静摩擦力;但第一次力的作用时间极短,摩擦力的冲量小,因此木块没有明显的动量变化,几乎不动。第二次摩擦力虽然较小,但它的作用时间长,摩擦力的冲量反而大,因此木块会有明显的动量变化。
A
B
C
例4:质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I。
解:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C。
⑴在下落的全过程对小球用动量定理:重力作用时间为t1+t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:
mg(t1+t2)-Ft2=0, 解得:
⑵仍然在下落的全过程对小球用动量定理:在t1时间内只有重力的冲量,在t2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:
mgt1-I=0,∴I=mgt1
这种题本身并不难,也不复杂,但一定要认真审题。要根据题意所要求的冲量将各个外力灵活组合。若本题目给出小球自由下落的高度,可先把高度转换成时间后再用动量定理。当t1>> t2时,F>>mg。
m M
v0
v/
例5:质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?
解:以汽车和拖车系统为研究对象,全过程系统受的合外力始终为,该过程经历时间为v0/μg,末状态拖车的动量为零。全过程对系统用动量定理可得:
这种方法只能用在拖车停下之前。因为拖车停下后,系统受的合外力中少了拖车受到的摩擦力,因此合外力大小不再是。
例6:质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反跳的最大高度为h2=0.2m,从小球下落到反跳到最高点经历的时间为Δt=0.6s,取g=10m/s2。求:小球撞击地面过程中,球对地面的平均压力的大小F。
解:以小球为研究对象,从开始下落到反跳到最高点的全过程动量变化为零,根据下降、上升高度可知其中下落、上升分别用时t1=0.3s和t2=0.2s,因此与地面作用的时间必为t3=0.1s。由动量定理得:mgΔt-Ft3=0 ,F=60N
三、动量守恒定律
目的要求
复习动量守恒定律及其应用。
知识要点
1.动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
即:
2.动量守恒定律成立的条件
⑴系统不受外力或者所受外力之和为零;
⑵系统受外力,但外力远小于内力,可以忽略不计;
⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
3.动量守恒定律的表达形式
除了,即p1+p2=p1/+p2/外,还有:
Δp1+Δp2=0,Δp1= -Δp2 和
4.动量守恒定律的重要意义
从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23 ②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。
例题分析
例1:质量为m=0.10kg的小钢球以Vo=10m/s的水平速度抛出,下落h=5.0m时撞击一钢板,撞后速度恰好反向,则钢板与水平地面的夹角θ=_______.刚要撞击时小球的动量的大小为________(g=10m/s2)
解:小钢球作平抛运动,撞击钢板时的竖直分速度Vy==10m/s.而水平方向作的是匀速运动,所以Vx=Vo=10m/s.而tgnθ=Vo/Vy=1,所以θ=450,另外钢球的末速度为:Vt=m/s,于是刚要撞击时小球的动量大小等于:
P=mVt=kgm/s
例2.质量为m的钢球自高处下落,以速度V1碰地,竖直向上弹回,碰撞时间极短,离地的速率为V2,在碰撞过程中,地面对钢球的冲量的方向和大小为( )
A.向下,m(V1-V2) B.向下,m(V1+V2)
C.向上,m(V1-V2) D.向上,m(V1+V2)
分析:将钢球作研究对象,钢球在碰地过程中的受力如图中的动画所示,图中mg为钢球受到的重力、N是受到地面对它的弹力,由于弹力和重力对钢球的冲量使钢球的动量发生改变.图中钢球的碰地速度V1,弹起速度为V2,我们假设垂直地面向上为正,对钢球运用动理定理得:
Nt-mgt=mV2-(-mV1)=mV2+mV1,
由于碰撞时间极短,t趋近于零,故mgt也趋于零可忽略不计,于是Nt=m(V2+V1),即弹力的冲量方向向上,大小等于m(V1+V2),故答案选D
例题3: 质量为M的小船以速度Vo行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾.现小孩a沿水平方向以速率V(相对于静水面)向前跃入水中,然后小孩b沿水平方向以同一速率(相对于静水面)向后跃入水中,求小孩b跃出后小船的速度。
本题是由三个物体组成的物体系,和两个物体过程的动量守恒定律的应用问题,选择合理的研究对象和研究过程可使解题方便简捷.
解答:选小孩a、b和船为一系统,在两小孩先后跳入水的整个过程中可忽略水的阻力.系统水平方向上动量守恒.设小孩b跃出后船向前行驶的速度为Vx,选Vx方向为正方向根据动量守恒定律有;
(M+2m)Vo=MVx+mV-mV 整理得:Vx=(1+2m/M)Vo
例题4:一列火车在水平直轨道上做匀速运动,总质量为M,速度为V,某时刻火车后部有质量为m的一节车厢脱钩,司机并未发觉,又继续行驶了一段距离,这期间车牵引力保持不变,并且火车各部所受的阻力跟运动速度无关,当司机发现时,后面脱钩的车厢的速度已减为V/3,求此时刻火车车厢前面部分的速度多大?
解答:火车原在铁轨上匀速运动,故所受合外力等于零,一节车厢脱钩后,牵引力和阻力均不变,火车系统合外力等于零,动量守恒.当脱钩车厢速度为V/3时,设前面部分的速度为V',根据动量守恒定律有:MV=(M-m)V'+mV/3
解得:
四、动量守恒定律的应用
目的要求
复习掌握动量守恒定律的应用
知识要点
1.碰撞:两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
A A B A B A B
v1
v
v1/
v2/
Ⅰ Ⅱ Ⅲ
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧。在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A、B分开,这时A、B的速度分别为。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证明A、B的最终速度分别为:。(这个结论最好背下来,以后经常要用到。)
⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。
v1
⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A、B不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A、B最终的共同速度为。在完全非弹性碰撞过程中,系统的动能损失最大,为:
。
(这个结论最好背下来,以后经常要用到。)
2.子弹打木块类问题:子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。
3.反冲问题:在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。
例题分析
例1:质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m
的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H 和物块的最终速度v。
解:系统水平方向动量守恒,全过程机械能也守恒。
在小球上升过程中,由水平方向系统动量守恒得:
由系统机械能守恒得: 解得
全过程系统水平动量守恒,机械能守恒,得
本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。
例2:动量分别为5kgm/s和6kgm/s的小球A、B沿光滑平面上的同一条直线同向运动,A追上B并发生碰撞后。若已知碰撞后A的动量减小了2kgm/s,而方向不变,那么A、B质量之比的可能范围是什么?
s2 d
s1
v0
v
解:A能追上B,说明碰前vA>vB,∴;碰后A的速度不大于B的速度, ;又因为碰撞过程系统动能不会增加, ,由以上不等式组解得:
此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理。
例3:设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解:子弹和木块最后共同运动,相当于完全非弹性碰撞。从动量的角度看,子弹射入木块过程中系统动量守恒:
从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d
对子弹用动能定理: ……①
对木块用动能定理: ……②
①、②相减得: ……③
这个式子的物理意义是:fd恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。
由上式不难求得平均阻力的大小:
至于木块前进的距离s2,可以由以上②、③相比得出:
从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:
一般情况下,所以s2<<d。这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:…④
当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔEK= f d(这里的d为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔEK的大小。
做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据。
l2 l1
例4:质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?
解:先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等于L。设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1+l2=L,∴
应该注意到:此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。
做这类题目,首先要画好示意图,要特别注意两个物体相对于地面的移动方向和两个物体位移大小之间的关系。
以上所列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1+m2)v0= m1v1+ m2v2列式。
例5:总质量为M的火箭模型 从飞机上释放时的速度为v0,速度方向水平。火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?
解:火箭喷出燃气前后系统动量守恒。喷出燃气后火箭剩余质量变为M-m,以v0方向为正方向,
动量和动量守恒
1. 如图所示,用弹簧片在将小球下的垫片打飞出去时,可以看到小球正好落到下面的凹槽中,这是因为在垫片飞出的过程中:
A.垫片受到的打击力很大
B.球受到的摩擦力很小
C.小球受到的摩擦力的冲量很小
D.小球的动量变化几乎为零
2. 如图所示,一根绳绕过定滑轮,两边各系质量为M和m的物体,M>m,M静止在地面上,今将m托高H然后放手让其下落,则M能上升的高度是(设M到最高点时,m尚未落地):
A. B.
C. D.
3. 如图所示,质量为m的小车的水平底板两端各装一根完全一样的弹簧,小车底板上有一质量为的滑块,滑块与小车、小车与地面的摩擦都不计.当小车静止时,滑块以速度v从中间向右运动,在滑块来回与左右弹簧碰撞的过程中:
A.当滑块速度方向向右,大小为时,一定是右边的弹簧压缩量最大
B.右边弹簧的最大压缩量大于左边弹簧的最大压缩量
C.左边弹簧的最大压缩量大于右边弹簧的最大压缩量
D.两边弹簧的最大压缩量相等
4. 质量相同的两个小球在光滑水平面上沿连心线同向运动,球1的动量为7kg·m/s,球2的动量为5kg·m/s,当球1追上球2时发生碰撞,则碰撞后两球动量变化的可能值是:
A.△P1=-1kg·m/s,△P2=1kg·m/s
B.△P1=-1 kg·m/s,△P2=4 kg·m/s
C.△P1=-9 kg·m/s,△P2=9 kg·m/s
D.△P1=-12 kg·m/s,△P2=10 kg·m/s
5. 如图所示,A、B两滑块的质量均为m,分别穿在上、下两个光滑的、足够长的水平放置的固定导杆上,两导杆间距为d,以自然长度为d的轻弹簧连接两滑块。设开始时两滑块位于同一竖直线上A速度为零.现给B滑块一个水平向右的冲量,其大小为I.此后,A滑块所能达到的最大速度为 ;当两滑块间距达到最大时,A的速度为 .
6. 如图所示,在光滑水平地面上有一辆质量为m的小车,车上装有一半径为R的光滑圆环.一个质量为m的小滑块从跟光滑车面等高的平台上以速度v0滑入圆环,已知M=2m,当v0= 时,小滑块运动到圆环顶端时恰好对圆环无压力.
7. 如图示,一个质量为m的玩具蛙,蹲在质量为m的小车的细杆上,小车放在光滑的水平桌面上,若车长为L,细杆高为h,且位于小车的中点.试求:当玩具蛙最小以多大的水平速度v跳出时,才能落到桌面上?
8. 如图所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之间用轻质弹簧相连,它们以共同的速度v0向右运动,另有一质量为m=的粘性物体,从高处自由落下,正好落在A车上,并与之粘合在一起,求这以后的运动过程中,弹簧获得的最大弹性势能EP。
9. 如图所示,光滑轨道上,小车A、B用轻弹簧连接,将弹簧压缩后用细绳系在A、B上.然后使A、B以速度v0沿轨道向右运动,运动中细绳突然断开,当弹簧第一次恢复到自然长度时,A的速度刚好为0,已知A、B的质量分别为mA、mB,且mA<mB。求:
⑴被压缩的弹簧具有的弹性势能EP
⑵试定量分析、讨论在以后的运动过程中,小车B有无速度为0的时刻?
10. 如图所示,长为0.51 m的木板A,质量为1kg.板上右端有物块B,质量为3 kg.它们一起在光滑的水平面上向左匀速运动.速度v0=2m/s.木板与等高的竖直固定板C发生碰撞,时间极短,没有机械能的损失.物块与木板间的动摩擦因数μ=0.5,g取10m/s2,求:
⑴第一次碰撞后,A、B共同运动的速度大小和方向.
⑵第一次碰撞后,A与C之间的最大距离.(结果保留两位小数)
⑶A与固定板碰撞几次,B可脱离A板.
11. 如图所示,质量为M=2.0kg的小车放在光滑水平面上,在小车右端放一质量为m=1.0吨的物块,物块与小车之间的动摩擦因数为μ=0.5.当物块与小车同时分别受到水平向左F1=6.0 N和水平向右F2=9.0N的拉力,并经0.4s时间后同时撤去两力,为使物块不从小车上滑下,求小车至少要多长.(g取10m/s2)
12. 一个质量为M的小车,静止在光滑水平面上,在小车的光滑板面上放一个质量为m的小物块(可视为质点),小车质量与小物块质量之比M:m=5:1,小物块距小车右端距离为l.如图所示,现沿平行车身方向加水平向右面恒力F,小物块由静止开始向右运动,之后与小车右端挡板相碰,若碰后小车速度大小为碰撞前小物块速度大小的,设小车足够长,小物块不会从小车上掉下来,且力F足够小,以至小物块与小车碰撞过程中可忽略不计,求:
⑴小物块与小车右端挡板第一次相撞后,小物块相对地面向左运动的最大距离.
⑵小物块与小车右端挡板第一次相碰后,小物块和小车右端挡板之间的最大距离.
⑶小物块从开始运动至第二次碰撞时,小物块相对地面发生的总位移.
参考答案
1.CD 2.B 3.D 4.AC 5., 6. 7.
8. 9.⑴ ⑵小车B速度不可能等于零。
10.⑴v=10m/s ⑵s=0.13m ⑶3次 11.s=0.336m
12.⑴ ⑵ ⑶
第六章.机械能
一、功和功率
目的要求
复习功和功率,掌握功和功率的计算公式。
知识要点
1.功:功是力的空间积累效应。它和位移相对应(也和时间相对应)。计算功的方法有两种:
⑴按照定义求功。即:W=Fscosθ。 在高中阶段,这种方法只适用于恒力做功。当时F做正功,当时F不做功,当时F做负功。
这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。
⑵用动能定理W=ΔEk或功能关系求功。当F为变力时,高中阶段往往考虑用这种方法求功。这里求得的功是该过程中外力对物体做的总功(或者说是合外力做的功)。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。
2.一对作用力和反作用力做功的特点
⑴一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。
⑵一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。
3.功率:功率是描述做功快慢的物理量。
⑴功率的定义式:,所求出的功率是时间t内的平均功率。
v
a
f
F
⑵功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。该公式有两种用法:①求某一时刻的瞬时功率。这时F是该时刻的作用力大小,v取瞬时值,对应的P为F在该时刻的瞬时功率;②当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率。
⑶重力的功率可表示为PG=mgvy,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。
⑷汽车的两种加速问题。当汽车从静止开始沿水平面加速运动时,有两种不同的加速过程,但分析时采用的基本公式都是P=Fv和F-f = ma
①恒定功率的加速。由公式P=Fv和F-f=ma知,由于P恒定,随着v的增大,F必将减小,a也必将减小,汽车做加速度不断减小的加速运动,直到F=f,a=0,这时v达到最大值。可见恒定功率的加速一定不是匀加速。这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力)。
②恒定牵引力的加速。由公式P=Fv和F-f=ma知,由于F恒定,所以a恒定,汽车做匀加速运动,而随着v的增大,P也将不断增大,直到P达到额定功率Pm,功率不能再增大了。这时匀加速运动结束,其最大速度为,此后汽车要想继续加速就只能做恒定功率的变加速运动了。可见恒定牵引力的加速时功率一定不恒定。这种加速过程发动机做的功只能用W=Fs计算,不能用W=Pt计算(因为P为变功率)。
要注意两种加速运动过程的最大速度的区别。
例题分析
θ
L
m
F
例1:如图所示,质量为m的小球用长L的细线悬挂而静止在竖直位置。在下列三种情况下,分别用水平拉力F将小球拉到细线与竖直方向成θ角的位置。在此过程中,拉力F做的功各是多少?⑴用F缓慢地拉;⑵F为恒力;⑶若F为恒力,而且拉到该位置时小球的速度刚好为零。可供选择的答案有
A. B.
C. D.
解:⑴若用F缓慢地拉,则显然F为变力,只能用动能定理求解。F做的功等于该过程克服重力做的功。选D
⑵若F为恒力,则可以直接按定义求功。选B
⑶若F为恒力,而且拉到该位置时小球的速度刚好为零,那么按定义直接求功和按动能定理求功都是正确的。选B、D
θ
2
在第三种情况下,由=,可以得到,可见在摆角为 时小球的速度最大。实际上,因为F与mg的合力也是恒力,而绳的拉力始终不做功,所以其效果相当于一个摆,我们可以把这样的装置叫做“歪摆”。
例2:质量为2t的农用汽车,发动机额定功率为30kW,汽车在水平路面行驶时能达到的最大时速为54km/h。若汽车以额定功率从静止开始加速,当其速度达到v=36km/h时的瞬时加速度是多大?
解:汽车在水平路面行驶达到最大速度时牵引力F等于阻力f,即Pm=fvm,而速度为v时的牵引力F=Pm/v,再利用F-f=ma,可以求得这时的a =0.50m/s2
二、动能定理
目的要求
复习动能定理及其应用。
知识要点
1.动能定理的表述
(1)合外力做的功等于物体动能的变化。(这里的合外力指物体受到的所有外力的合力,包括重力)。表达式为W=ΔEK
(2)动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。实际应用时,后一种表述比较好操作。不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。
(3)和动量定理一样,动能定理也建立起过程量(功)和状态量(动能)间的联系。这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。和动量定理不同的是:功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。
2.应用动能定理解题的步骤
⑴确定研究对象和研究过程。和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。
⑵对研究对象进行受力分析。(研究对象以外的物体施于研究对象的力都要分析,含重力)。
⑶写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。
⑷写出物体的初、末动能。
⑸按照动能定理列式求解。
例题分析
例1:如图所示,斜面倾角为α,长为L,AB段光滑,BC段粗糙,且BC=2 AB。质量为m的木块从斜面顶端无初速下滑,到达C端时速度刚好减小到零。求物体和斜面BC段间的动摩擦因数μ。
α
C
B
A
解:以木块为对象,在下滑全过程中用动能定理:重力做的功为mgLsinα,摩擦力做的功为,支持力不做功。初、末动能均为零。
mgLsinα=0,
从本例题可以看出,由于用动能定理列方程时不牵扯过程中不同阶段的加速度,所以比用牛顿定律和运动学方程解题简洁得多。
v
v /
f
G
G
f
例2:将小球以初速度v0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。设空气阻力大小恒定,求小球落回抛出点时的速度大小v。
解:有空气阻力和无空气阻力两种情况下分别在上升过程对小球用动能定理:
和,可得
H=v02/2g,
再以小球为对象,在有空气阻力的情况下对上升和下落的全过程用动能定理。全过程重力做的功为零,所以有:
,解得
从本题可以看出:根据题意灵活地选取研究过程可以使问题变得简单。有时取全过程简单;有时则取某一阶段简单。原则是尽量使做功的力减少,各个力的功计算方便;或使初、末动能等于零。
L
h
s
例3:质量为M的木块放在水平台面上,台面比水平地面高出h=0.20m,木块离台的右端L=1.7m。质量为m=0.10M的子弹以v0=180m/s的速度水平射向木块,并以v=90m/s的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s=1.6m,求木块与台面间的动摩擦因数为μ。
解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段。所以本题必须分三个阶段列方程:
子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v1,
mv0= mv+Mv1……①
木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v2,有:……②
木块离开台面后的平抛阶段,……③
由①、②、③可得μ=0.50
从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理。
从本题还应引起注意的是:不要对系统用动能定理。在子弹穿过木块阶段,子弹和木块间的一对摩擦力做的总功为负功。如果对系统在全过程用动能定理,就会把这个负功漏掉。
A
B
C
D
G
G
N
N
例4:如图所示,小球以大小为v0的初速度由A端向右运动,到B端时的速度减小为vB;若以同样大小的初速度由B端向左运动,到A端时的速度减小为vA。已知小球运动过程中始终未离开该粗糙轨道。比较vA 、vB的大小,结论是
A.vA>vB B.vA=vB
C.vA<vB D.无法确定
解:小球向右通过凹槽C时的速率比向左通过凹槽C时的速率大,由向心力方程可知,对应的弹力N一定大,滑动摩擦力也大,克服阻力做的功多;又小球向右通过凸起D时的速率比向左通过凸起D时的速率小,由向心力方程可知,对应的弹力N一定大,滑动摩擦力也大,克服阻力做的功多。所以小球向右运动全过程克服阻力做功多,动能损失多,末动能小,选A。
三、机械能守恒定律
目的要求
复习机械能守恒定律及其应用。
知识要点
1.机械能守恒定律的两种表述
⑴在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
⑵如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
对机械能守恒定律的理解:
①机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v,也是相对于地面的速度。
②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
③“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
2.机械能守恒定律的各种表达形式
⑴,即;
⑵;;
用⑴时,需要规定重力势能的参考平面。用⑵时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。尤其是用ΔE增=ΔE减,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。
3.解题步骤
⑴确定研究对象和研究过程。
⑵判断机械能是否守恒。
⑶选定一种表达式,列式求解。
N
s
例题分析
例1:如图物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?
解:以物块和斜面系
展开阅读全文