资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2015/12/16,#,第,5,章 一元一次方程,复习课,1,1,1,、关于,x,的方程,是一元一次方程,则,a=,;,1,、关于,x,的方程,是一元一次方程,则,a=,;,2,、关于,x,的方程,是一元一次方程,则,a=,;,2,、关于,x,的方程,是一元一次方程,则,a=,;,3,、关于,x,的方程,是一元一次方程,则,x=,;,0,0,或,-2,5,一元一次方程:,等式两边都是整式;,只含有一个未知数;,未知数的指数是一次。,1,、求方程,4,的解。,2,、求方程,的解。,3,、求方程,的解。,去分母,去括号,移项,合并同类项,两边同除以未知数系数,4,4,1,、已知一元一次方程,与方程,4,有相同的解,求,b,的值。,1,、求方程,4,的解。,令方程,的解为,=5,,,方程,4(,+,)=,(,+,),3,的解为,。,1,、已知一元一次方程,与方程,4,有相同的解,求,b,的值。,解:,由题意得,,两方程同解,,。,将,代入方程,4(,+,)=,(,+,),3,,得,4,b,的值为,-3.,1,、求方程,4,的解。,2,、求方程,的解。,3,、求方程,的解。,去分母,去括号,移项,合并同类项,两边同除以未知数系数,2,、求方程,的解。,2,、已知一元一次方程,的解与方程,的解互为相反数,求,b,的值。,令方程,的解为,=5,,,方程,的解为,。,解:,由题意得,,两方程解互为相反数,,。,将,代入方程,,得,b,的值为,9.,3,、将一元一次方程,与方程,的解的值表示在同一数轴上,当两点间距离为,1,时,求此时,b,的值。,0,3,1,2,-1,4,5,6,令方程,的解为,=5,,,方程,的解为,。,解:,当,时,,两方程解的值在数轴上距离为,1,,又,=,5,,,或,6.,当,时,,综上所述,,或,4,、将一元一次方程,与方程,的解的值表示在同一数轴上,当两点间距离最小时,求此时,b,的值。,-3 -2 -1 0 1 2 3 4 5 6 7,解:,令方程,的解为,=5,,,方程,的解为,。,当两点间距离最小时,即为两点重合时,此时,,所以,,b=-3.,数形结合,的数学思想方法,4,如果关于,x,的方程,有无数个解,求,k,的值。,解:,方程有无数多解,,当,时,原方程有无数个解。,已知关于,x,的方程,的解,x,与字母,k,都是正整数,求,k,的值。,解:,x,,,k,为正整数,,10-k,也为正整数,。,又,19,是素数,,x,与(,10-k,)的取值只能是下列两种情况,x=1,,且,10-k=19,;,x=19,,且,10-k=1,;,解得,,x=1,,,k=-9,;,x=19,,,k=9,;,由于,k,为正整数,故不合题意,舍去。,综上所述,,k=9,。,解:,又,19,是素数,,x,与(,10-k,)的取值只能是下列四种情况:,k,为整数,,10-k,也为整数。,x=1,,且,10-k=19,;,x=19,,且,10-k=1,;,x=-1,,且,10-k=-19,;,x=-19,,且,10-k=-1,;,解得,,x=1,,,k=-9,;,x=19,,,k=9,;,x=-1,,,k=29,;,x=-19,,,k=11,;,综上所述,,k,的值为,9,,,29,或,11,。,经检验,均符合题意。,分类讨论,的,数学思想方法,已知关于,x,的方程,的解,x,与字母,k,都是整数,求,k,的值。,一元一次方程:,等式两边都是整式;,只含有一个未知数;,未知数的指数是一次。,解一元一次方程一般步骤:,去,分母去括号,移项合并同类项,两边同除以未知数系数,【,课堂小结,】,数形结合,的数学思想方法,分类讨论,的数学思想方法,谢谢!,(,1,)当,时,,解:,此时,,k,的值,为,9,。,(,2,)当,时,,x=1,,且,k+10=13,;,x=13,,且,k+10,=1,;,x=-1,,且,k+10=-13,;,x=-13,,且,k+10=-1,;,综,上所述,,k,的值为,9,。,已知关于,x,的方程,的解,x,与字母,k,都是整数,求,k,的值。,x=1,,,k=-9,;,x=19,,,k=9,;,x=-1,,,k=29,;,x=-19,,,k=11,;,经检验,,只有,符,合题意。,x=1,,,k=3,;,x=13,,,k=-9,;,x=-1,,,k=-23,;,x=-13,,,k=-11,;,经检验,,只有,符,合题意。,此时,,k,的值,为,-9,。,
展开阅读全文