资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,计算机网络(第,6,版)课件,电子工业出版社,2012,年,第,1,章 概述,1.1,计算机网络在信息时代中的作用,1.2,因特网概述,1.2.1,网络的网络,1.2.2,因特网发展的三个阶段,1.2.3,因特网的标准化工作,1.3,因特网的组成,1.3.1,因特网的边缘部分,1.3.2,因特网的核心部分,第,1,章 概述(续),1.4,计算机网络在我国的发展,1.5,计算机网络的类别,1.5.1,计算机网络的定义,1.5.2,几种不同类别的网络,1.6,计算机网络的性能,1.6.1,计算机网络的性能指标,1.6.2,计算机网络的非性能特征,第,1,章 概述(续),1.7,计算机网络的体系结构,1.7.1,计算机网络体系结构的形成,1.7.2,协议与划分层次,1.7.3,具有五层协议的体系结构,1.7.4,实体、协议、服务和服务访问点,1.7.5 TCP/IP,的体系结构,1.1,计算机网络在信息时代的作用,21,世纪的一些重要特征就是数字化、网络化和信息化,它是一个以网络为核心的信息时代。,网络现已成为信息社会的命脉和发展知识经济的重要基础。,网络是指“三网”,即电信网络、有线电视网络和计算机网络。,发展最快的并起到核心作用的是计算机网络。,因特网,(Internet),的发展,进入,20,世纪,90,年代以后,以因特网为代表的计算机网络得到了飞速的发展。,已从最初的教育科研网络逐步发展成为商业网络。,已成为仅次于全球电话网的世界第二大网络。,因特网的意义,因特网是自印刷术以来人类通信方面最大的变革。,现在人们的生活、工作、学习和交往都已离不开因特网。,计算机网络向用户提供的最重要的功能,连通性,计算机网络使上网用户之间都可以交换信息,好像这些用户的计算机都可以彼此直接连通一样。,共享,即资源共享。可以是信息共享、软件共享,也可以是硬件共享。,1.2,因特网概述,1.2.1,网络的网络,起源于美国的因特网现已发展成为世界上最大的国际性计算机互联网,网络,(network),由若干,结点,(node),和连接这些结点的,链路,(link),组成。,互联网是“,网络的网络,”,(network of networks),。,连接在因特网上的计算机都称为,主机,(host),。,请注意名词“结点”,“,结点”的英文名词是,node,。,虽然,node,有时也可译为“节点”,但这是指像天线上的驻波的节点,这种节点很像竹竿上的“节”。,在网络中的,node,的标准译名是“,结点,”而不是“节点”。,但数据结构的,树,(tree),中的,node,应当译为“节点”。,网络与因特网,网络把许多计算机连接在一起。,因特网则把许多网络连接在一起。,(a),(b),网络,互联网(网络的网络),结点,链路,主机,因特网,1.2.2,因特网发展的三个阶段,第一阶段是从单个网络,ARPANET,向互联网发展的过程。,1983,年,TCP/IP,协议成为,ARPANET,上的标准协议。,人们把,1983,年作为因特网的诞生时间。,Internet,和,Internet,的区别,以,小写字母,i,开始的,internet,(互联网或互连网)是一个通用名词,它泛指由多个计算机网络互连而成的网络。,以,大写字母,I,开始的的,Internet,(因特网)则是一个专用名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定计算机网络,它采用,TCP/IP,协议族作为通信的规则,且其前身是美国的,ARPANET,。,三级结构的因特网,第二阶段的特点是建成了三级结构的因特网。,三级计算机网络,分为主干网、地区网和校园网(或企业网)。,多层次,ISP,结构的因特网,第三阶段的特点是逐渐形成了多层次,ISP,结构的因特网。,出现了,因特网服务提供者,ISP,(Internet Service Provider),。,用户,因特网,ISP,1,ISP,2,因特网,服务提供者,用户通过,ISP,上网,根据提供服务的覆盖面积大小以及所拥有的,IP,地址数目的不同,,ISP,也分成为不同的层次。,大公司,公司,本地,ISP,A,B,主机,A,本地,ISP,地区,ISP,主干,ISP,地区,ISP,本地,ISP,主机,B,本地,ISP,主干,ISP,本地,ISP,本地,ISP,地区,ISP,主干,ISP,主干,ISP,地区,ISP,地区,ISP,地区,ISP,本地,ISP,本地,ISP,IXP,本地,ISP,校园网,校园网,下面是具有三层,ISP,结构的因特网的概念示意图,到,2012,年,3,月,全球已经有,91,个国家拥有,IXP,,,其中拥有,10,个以上,IXP,的国家仅有,9,个,,而仅拥有一个,IXP,的有,48,个国家。,万维网,WWW,的问世,因特网已经成为世界上规模最大和增长速率最快的计算机网络,没有人能够准确说出因特网究竟有多大。,因特网的迅猛发展始于,20,世纪,90,年代。由欧洲原子核研究组织,CERN,开发的万维网,WWW,(World Wide Web),被广泛使用在因特网上,大大方便了广大非网络专业人员对网络的使用,成为因特网的这种指数级增长的主要驱动力。,因特网的发展情况概况(统计到,2005,年),网络数 主机数 用户数 管理机构数,1980 10 10,2,10,2,10,0,1990 10,3,10,5,10,6,10,1,2000 10,5,10,7,10,8,10,2,2005 10,6,10,8,10,9,10,3,1.2.3,关于因特网的标准化工作,因特网协会,ISOC,因特网研究指导小组,IRSG,因特网研究部,IRTF,因特网工程部,IETF,因特网工程指导小组,IESG,RG,WG,RG,领域,领域,因特网体系结构,研究委员会,IAB,WG,WG,WG,制订因特网的正式标准要经过以下的四个阶段,因特网草案,(Internet Draft),在这个阶段还,不是,RFC,文档。,建议标准,(Proposed Standard),从这个阶段开始就成为,RFC,文档。,草案标准,(Draft Standard),因特网标准,(Internet Standard),各种,RFC,之间的关系,因特网草案,建议标准,草案标准,因特网标准,历史的,RFC,实验的,RFC,提供信息的,RFC,6,种,RFC,1.3,因特网的组成,从因特网的工作方式上看,可以划分为以下的两大块:,(1),边缘部分,由所有连接在因特网上的主机组成。这部分是用户直接使用的,用来进行通信(传送数据、音频或视频)和资源共享。,(2),核心部分,由大量网络和连接这些网络的路由器组成。这部分是为边缘部分提供服务的(提供连通性和交换)。,因特网的核心部分,因特网的边缘部分,主机,网络,路由器,因特网的边缘部分与核心部分,1.3.1,因特网的边缘部分,处在因特网边缘的部分就是连接在因特网上的所有的主机。这些主机又称为,端系统,(end system),。,“主机,A,和主机,B,进行通信”,实际上是指:“运行在主机,A,上的某个程序和运行在主机,B,上的另一个程序进行通信”。,即“主机,A,的某个进程和主机,B,上的另一个进程进行通信”。或简称为“计算机之间通信”,两种通信方式,在网络边缘的端系统中运行的程序之间的通信方式通常可划分为两大类:,客户,服务器方式,(,C/S,方式),即,Client/Server,方式,对等方式,(,P2P,方式),即,Peer-to-Peer,方式,1.,客户服务器方式,客户,(client),和,服务器,(server),都是指通信中所涉及的两个应用进程。,客户,服务器方式所描述的是进程之间服务和被服务的关系。,客户是,服务的请求方,,服务器是,服务的提供方,。,运行,客户,程序,网络边缘,网络核心,运行,服务器,程序,A,B,请求服务,得到服务,客户,服务器,客户,A,向服务器,B,发出请求服务,,而服务器,B,向客户,A,提供服务。,客户软件的特点,被用户调用后运行,在打算通信时主动向远地服务器发起通信(请求服务)。因此,客户程序必须知道服务器程序的地址。,不需要特殊的硬件和很复杂的操作系统。,服务器软件的特点,一种专门用来提供某种服务的程序,可同时处理多个远地或本地客户的请求。,系统启动后即自动调用并,一直不断地运行着,,,被动地等待,并接受来自各地的客户的通信请求。因此,服务器程序不需要知道客户程序的地址。,一般需要强大的硬件和高级的操作系统支持。,2.,对等连接方式,对等连接,(peer-to-peer,,简写为,P2P,),是指两个主机在通信时并不区分哪一个是服务请求方还是服务提供方。,只要两个主机都运行了对等连接软件(,P2P,软件),它们就可以进行,平等的、对等连接通信,。,双方都可以下载对方已经存储在硬盘中的共享文档。,对等连接方式的特点,对等连接方式从本质上看仍然是使用客户服务器方式,只是对等连接中的每一个主机既是客户又同时是服务器。,例如主机,C,请求,D,的服务时,,C,是客户,,D,是服务器。但如果,C,又同时向,F,提供服务,那么,C,又同时起着服务器的作用。,网络边缘,网络核心,运行,P2P,程序,运行,P2P,程序,D,C,E,F,运行,P2P,程序,运行,P2P,程序,1.3.2,因特网的核心部分,网络核心部分是因特网中最复杂的部分。,网络中的核心部分要向网络边缘中的大量主机提供连通性,使边缘部分中的任何一个主机都能够向其他主机通信(即传送或接收各种形式的数据)。,在网络核心部分起特殊作用的是,路由器,(router),。,路由器是实现,分组交换,(packet switching),的关键构件,其任务是转发收到的分组,这是网络核心部分最重要的功能。,路由器的重要任务,路由器是实现,分组交换,(packet switching),的关键构件,其任务是转发收到的分组,这是网络核心部分最重要的功能。,1.,电路交换的主要特点,两部电话机只需要用一对电线就能够互相连接起来。,更多的电话机互相连通,5,部电话机两两相连,需,10,对电线。,N,部电话机两两相连,需,N,(,N,1)/2,对电线。,当电话机的数量很大时,这种连接方法需要的电线对的数量与电话机数的平方成正比。,使用交换机,当电话机的数量增多时,就要使用交换机来完成全网的交换任务。,交换机,“,交换”的含义,在这里,“,交换,”,(switching),的含义就是,转接,把一条电话线转接到另一条电话线,使它们连通起来。,从通信资源的分配角度来看,“交换”就是按照某种方式,动态地分配,传输线路的资源。,电路交换的特点,电路交换必定是面向连接的。,电路交换的三个阶段:,建立连接,通信,释放连接,电路交换举例,A,和,B,通话经过四个交换机,通话在,A,到,B,的连接上进行,电路交换传送计算机数据效率低,计算机数据具有突发性。,这导致通信线路的利用率很低。,报文,2.,分组交换的主要特点,在发送端,先把较长的报文,划分成较短的、固定长度的数据段,。,1101000110101010110101011100010011010010,假定这个报文较长,不便于传输,数 据,数 据,数 据,报文,添加首部构成分组,每一个数据段前面添加上,首部,构成分组。,首部,首部,首部,分组,1,分组,2,分组,3,请注意:现在左边是,“,前面,”,分组交换的传输单元,分组交换网以“,分组,”作为数据传输单元。,依次,把各分组发送到接收端(假定接收端在左边)。,数 据,首部,分组,1,数 据,首部,分组,2,数 据,首部,分组,3,分组首部的重要性,每一个,分组的首部都含有,地址,等控制信息。,分组交换网中的结点交换机根据收到的分组的首部中的,地址信息,,把分组,转发,到下一个结点交换机。,用这样的,存储转发,方式,最后分组就能到达,最终目的地,。,收到分组后剥去首部,接收端收到分组后剥去首部还原成报文。,数 据,首部,分组,1,数 据,首部,分组,2,数 据,首部,分组,3,收到的数据,数 据,数 据,数 据,最后还原成原来的报文,最后,在接收端把收到的数据,恢复成为原来的报文,。,这里我们假定分组在传输过程中没有出现差错,在转发时也没有被丢弃。,报文,1101000110101010110101011100010011010010,因特网的核心部分,因特网的核心部分是由许多,网络,和把它们互连起来的,路由器,组成,而,主机处在因特网的边缘部分,。,在因特网核心部分的路由器之间一般都用高速链路相连接,而在网络边缘的主机接入到核心部分则通常以相对较低速率的链路相连接。,主机,的用途是为用户进行信息处理的,并且可以和其他主机通过网络交换信息。,路由器,的用途则是用来转发分组的,即进行分组交换的。,H,1,H,5,H,2,H,4,H,3,H,6,路由器,网络,网络核心部分,主机,H,1,H,5,H,2,H,4,H,3,H,6,发送的,分组,路由器,A,E,D,B,C,网络核心部分,主机,分组交换网的示意图,H,1,A,互联网,B,D,E,C,H,5,H,6,H,4,H,2,H,3,H,1,向,H,5,发送分组,H,2,向,H,6,发送分组,注意分组路径的变化!,路由器,主机,注意分组的,存储转发,过程,H,1,A,互联网,B,D,E,C,H,5,H,6,H,4,H,2,H,3,H,1,向,H,5,发送分组,路由器,主机,在路由器,E,暂存,查找转发表,找到转发的端口,最后到达目的主机,H,5,在路由器,C,暂存,查找转发表,找到转发的端口,在路由器,A,暂存,查找转发表,找到转发的端口,路由器,在路由器中的输入和输出端口之间,没有直接连线,。,路由器处理分组的过程是:,把收到的分组先放入,缓存(暂时存储),;,查找,转发表,,找出到某个目的地址应从哪个端口转发;,把分组送到适当的,端口,转发出去。,主机和路由器的作用不同,主机是,为用户进行信息处理,的,并向网络发送分组,从网络接收分组。,路由器对分组进行,存储转发,,最后把分组交付目的主机。,分组交换的优点,高效,动态分配传输带宽,对通信链路是逐段占用。,灵活,以分组为传送单位和查找路由。,迅速,不必先建立连接就能向其他主机发送分组。,可靠,保证可靠性的网络协议;分布式的路由选择协议使网络有很好的生存性。,分组交换带来的问题,分组在各结点存储转发时需要,排队,,这就会造成一定的,时延,。,分组必须携带的首部(里面有必不可少的控制信息)也造成了一定的,开销,。,存储转发原理并非完全新的概念,在,20,世纪,40,年代,电报通信也采用了基于存储转发原理的,报文交换,(message switching),。,报文交换的时延较长,从几分钟到几小时不等。现在报文交换已经很少有人使用了。,三种交换的比较,P,1,P,2,P,3,P,4,P,1,P,2,P,3,P,4,P,3,P,4,报,文,报,文,报,文,A B C D,A B C D,A B C D,报文交换,电路交换,分组交换,t,连接建立,数据传送,报文,P,2,P,1,连接释放,数据传送,的特点,比特流直达终点,报文,报文,报文,分组,分组,分组,存储,转发,存储,转发,存储,转发,存储,转发,计算机网络的产生背景,是,20,世纪,60,年代美苏冷战时期的产物。,60,年代初,美国国防部领导的远景研究规划局,ARPA(Advanced Research Project Agency),提出要研制一种生存性,(survivability),很强的网络。,传统的电路交换,(circuit switching),的电信网有一个缺点:正在通信的电路中有一个交换机或有一条链路被炸毁,则整个通信电路就要中断。,如要改用其他迂回电路,必须重新拨号建立连接。这将要延误一些时间。,新型网络的基本特点,网络用于计算机之间的数据传送,而不是为了打电话。,网络能够连接不同类型的计算机,不局限于单一类型的计算机。,所有的网络结点都同等重要,因而大大提高网络的生存性。,计算机在进行通信时,必须有冗余的路由。,网络的结构应当尽可能地简单,同时还能够非常可靠地传送数据。,ARPANET,的成功使计算机网络的概念发生根本变化,早期的面向终端的计算机网络是以,单个主机为中心,的星形网,各终端通过通信线路共享昂贵的中心主机的硬件和软件资源。,分组交换网则是以,网络为中心,,主机都处在网络的外围。,用户通过分组交换网可共享连接在网络上的许多硬件和各种丰富的软件资源。,从主机为中心到以网络为中心,主机,终端,以主机为中心,以分组交换网为中心,主机,分组交换网,1.4,计算机网络在我国的发展,铁道部在,1980,年开始进行计算机联网实验。,1989,年,11,月我国第一个公用分组交换网,CNPAC,建成运行。,1994,年,4,月,20,日我国用,64 kb/s,专线正式连入因特网。,中国教育和科研计算机网,CERNET(China Education and Research NETwork),,简称为中国教育网,是由国家投资建设,教育部负责管理,清华大学等高等学校承担建设和管理运行的全国性学术计算机互联网络。,中国互联网络信息中心,CNNIC(Network Information Center of China),每年两次公布的我国因特网的发展情况。,1.5,计算机网络的分类,1.5.1,计算机网络的不同定义,最简单的定义:计算机网络是,一些互相连接的、自治的计算机的集合。,因特网,(Internet),是,“,网络的网络,”,。,1.5.2,几种不同类别的网络,1.,从网络的作用范围进行分类,广域网,WAN,(Wide Area Network),局域网,LAN,(Local Area Network),城域网,MAN,(Metropolitan Area Network),个人区域网,PAN,(Personal Area Network),2.,不同使用者的网络,从网络的使用者进行分类,公用网,(public network),专用网,(private network),用来把用户接入到因特网的网络,接入网,AN(Access Network),,它又称为本地接入网或居民接入网。,由,ISP,提供的接入网只是起到让用户能够与因特网连接的“桥梁”作用。,1.6,计算机网络的性能,1.6.1,计算机网络的性能指标,1.,速率,比特,(,bit,)是计算机中数据量的单位,也是信息论中使用的信息量的单位。,Bit,来源于,binary digit,,意思是一个“,二进制数字,”,因此一个比特就是二进制数字中的一个,1,或,0,。,速率,即,数据率,(data rate),或,比特率,(bit rate),是计算机网络中最重要的一个性能指标。速率的单位是,b/s,,或,kb/s,Mb/s,Gb/s,等,速率往往是指,额定速率,或,标称速率,。,2.,带宽,“,带宽,”,(bandwidth),本来是指信号具有的频带宽度,单位是赫(或千赫、兆赫、吉赫等)。,现在“带宽”是数字信道所能传送的“,最高数据率,”的同义语,单位是“比特每秒”,或,b/s(bit/s),。,常用的带宽单位,更常用的带宽单位是,千比每秒,即,kb/s,(,10,3,b/s,),兆比每秒,即,Mb/s,(,10,6,b/s,),吉比每秒,即,Gb/s,(,10,9,b/s,),太比每秒,即,Tb/s,(,10,12,b/s,),请注意:在计算机界,,K=2,10,=1024,M=2,20,G=2,30,T=2,40,。,数字信号流随时间的变化,在,时间轴上,信号的宽度随带宽的增大而变窄。,每,秒,10,6,个比特,时间,1,0 1,0,1 1,1,s,带宽为,1 Mb/s,时间,每,秒,4,10,6,个比特,0.25,s,带宽为,4 Mb/s,3.,吞吐量,吞吐量,(throughput),表示在单位时间内通过某个网络(或信道、接口)的数据量。,吞吐量更经常地用于对现实世界中的网络的一种测量,以便知道实际上到底有多少数据量能够通过网络。,吞吐量受网络的带宽或网络的额定速率的限制。,4.,时延,(delay,或,latency),发送时延,发送数据时,数据帧从结点进入到传输媒体所需要的时间。,也就是从发送数据帧的第一个比特算起,到该帧的最后一个比特发送完毕所需的时间。,发送时延,=,数据帧长度(,b,),发送速率(,b/s,),时延,(delay,或,latency),传播时延,电磁波在信道中需要传播一定的距离而花费的时间。,信号发送速率和信号在信道上的,传播速率,是完全不同的概念。,传播时延,=,信道长度(,米,),信号在信道上的传播速率(,米,/,秒,),时延,(delay,或,latency),处理时延,交换结点为存储转发而进行一些必要的处理所花费的时间。,排队时延,结点缓存队列中分组,排队,所经历的时延。,排队时延的长短往往取决于网络中,当时的通信量,。,时延,(delay,或,latency),数据经历的总时延就是发送时延、传播时延、处理时延和排队时延之和:,总时延,=,发送时延,+,传播时延,+,处理时延,+,处理时延,四种时延所产生的地方,1 0 1 1 0 0 1,发送器,队列,在链路上产生,传播时延,结点,B,结点,A,在发送器产生发送时延,(,即传输时延,),在结点,A,中产生,处理时延和排队时延,数据,从结点,A,向结点,B,发送数据,链路,容易产生的错误概念,对于高速网络链路,我们提高的仅仅是数据的,发送速率,而不是比特在链路上的,传播速率,。,提高链路带宽减小了数据的发送时延。,5.,时延带宽积,(传播)时延,链路,带宽,时延带宽积,=,传播时延,带宽,链路的时延带宽积又称为以,比特,为单位的链路长度。,时延带宽积,6.,利用率,信道利用率,指出某信道有百分之几的时间是被利用的(有数据通过)。完全空闲的信道的利用率是零。,网络利用率,则是全网络的信道利用率的加权平均值。,信道利用率并非越高越好。,时延与网络利用率的关系,根据排队论的理论,当某信道的利用率增大时,该信道引起的时延也就迅速增加。,若令,D,0,表示网络空闲时的时延,,D,表示网络当前的时延,则在适当的假定条件下,可以用下面的简单公式表示,D,和,D,0,之间的关系:,U,是网络的利用率,数值在,0,到,1,之间。,时延,D,利用率,U,1,0,D,0,时延,急剧,增大,1.6.2,计算机网络的非性能特征,费用,质量,标准化,可靠性,可扩展性和可升级性,易于管理和维护,1.7,计算机网络的体系结构,1.7.1,计算机网络体系结构的形成,相互通信的两个计算机系统必须,高度协调工作,才行,而这种“协调”是相当复杂的。,“,分层,”可将庞大而复杂的问题,转化为若干较小的局部问题,而这些较小的局部问题就比较易于研究和处理。,关于开放系统互连参考模型,OSI/RM,只要遵循,OSI,标准,一个系统就可以和位于世界上任何地方的、也遵循这同一标准的其他任何系统进行通信。,在市场化方面,OSI,却失败了。,OSI,的专家们在完成,OSI,标准时没有商业驱动力;,OSI,的协议实现起来过分复杂,且运行效率很低;,OSI,标准的制定周期太长,因而使得按,OSI,标准生产的设备无法及时进入市场;,OSI,的层次划分并也不太合理,有些功能在多个层次中重复出现。,两种国际标准,法律上的,(,de jure,),国际标准,OSI,并没有得到市场的认可。,是非国际标准,TCP/IP,现在获得了最广泛的应用。,TCP/IP,常被称为,事实上的,(,de facto,),国际标准,。,1.7.2,协议与划分层次,计算机网络中的数据交换,必须遵守事先约定好的规则,。,这些,规则,明确规定了所交换的数据的格式以及有关的同步问题(同步含有时序的意思)。,网络协议,(network protocol),,简称为,协议,,是,为进行网络中的数据交换而建立的规则、标准或约定。,网络协议的组成要素,语法,数据与控制信息的结构或格式。,语义,需要发出何种控制信息,完成何种动作以及做出何种响应。,同步,事件实现顺序的详细说明。,划分层次的概念举例,主机,1,向主机,2,通过网络发送文件。,可以将要做的工作进行如下的划分。,第一类工作与传送文件直接有关。,确信对方已做好接收和存储文件的准备。,双方协调好一致的文件格式。,两个主机将,文件传送模块,作为最高的一层。剩下的工作由下面的模块负责。,两个主机交换文件,文件传送模块,主机,1,主机,2,文件传送模块,只看这两个文件传送模块,好像文件及文件传送命令,是按照水平方向的虚线传送的,把文件交给下层模块,进行发送,把收到的文件交给,上层模块,再设计一个通信服务模块,文件传送模块,主机,1,主机,2,文件传送模块,只看这两个通信服务模块,好像可直接把文件,可靠地传送到对方,把文件交给下层模块,进行发送,把收到的文件交给,上层模块,通信服务模块,通信服务模块,再设计一个网络接入模块,文件传送模块,主机,1,主机,2,文件传送模块,通信服务模块,通信服务模块,网络接入模块,网络接入模块,通信网络,网络,接口,网络,接口,网络接入模块负责做与网络接口细节有关的工作,例如,规定传输的帧格式,帧的最大长度等。,分层的好处,各层之间是独立的。,灵活性好。,结构上可分割开。,易于实现和维护。,能促进标准化工作。,层数多少要适当,若层数太少,就会使每一层的协议太复杂。,层数太多又会在描述和综合各层功能的系统工程任务时遇到较多的困难。,计算机网络的体系结构,计算机网络的,体系结构,(architecture),是计算机网络的各层及其协议的集合。,体系结构就是这个计算机网络及其部件所应完成的功能的,精确定义,。,实现,(implementation),是遵循这种体系结构的前提下用何种硬件或软件完成这些功能的问题。,体系结构是抽象的,而实现则是具体的,是真正在运行的计算机硬件和软件。,1.7.3,具有五层协议的体系结构,TCP/IP,是四层的体系结构:应用层、运输层、网际层和网络接口层。,但最下面的网络接口层并没有具体内容。,因此往往采取折中的办法,即综合,OSI,和,TCP/IP,的优点,采用一种只有五层协议的体系结构。,五层协议的体系结构,应用层,(application layer),运输层,(transport layer),网络层,(network layer),数据链路层,(data link layer),物理层,(physical layer),数据链路层,5,应用层,4,运输层,3,网络层,2,数据链路层,1,物理层,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,应用进程数据先传送到应用层,加上应用层首部,成为应用层,PDU,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,应用层,PDU,再传送到运输层,加上运输层首部,成为运输层报文,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,运输层报文再传送到网络层,加上网络层首部,成为,IP,数据报(或分组),主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,IP,数据报再传送到数据链路层,加上链路层首部和尾部,成为数据链路层帧,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,数据链路层帧再传送到物理层,最下面的物理层把比特流传送到物理媒体,主机,1,向主机,2,发送数据,应用层,(application layer),5,4,3,2,1,5,4,3,2,1,物理传输媒体,主机,1,AP,2,AP,1,电信号(或光信号)在物理媒体中传播,从发送端物理层传送到接收端物理层,主机,2,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,物理层接收到比特流,上交给数据链路层,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,数据链路层剥去帧首部和帧尾部,取出数据部分,上交给网络层,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,网络层剥去首部,取出数据部分,上交给运输层,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,运输层剥去首部,取出数据部分,上交给应用层,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,应用层剥去首部,取出应用程序数据,上交给应用进程,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,我收到了,AP,1,发来的,应用程序数据!,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,应 用 程 序 数 据,应用层首部,H,5,10100110100101,比 特 流,110101110101,注意观察加入或剥去首部(尾部)的层次,应 用 程 序 数 据,H,5,应 用 程 序 数 据,H,4,H,5,应 用 程 序 数 据,H,3,H,4,H,5,应 用 程 序 数 据,H,4,运输层首部,H,3,网络层首部,H,2,链路层,首部,T,2,链路层,尾部,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,10100110100101,比 特 流,110101110101,计算机,2,的物理层收到比特流后,交给数据链路层,H,2,T,2,H,3,H,4,H,5,应 用 程 序 数 据,H,3,H,4,H,5,应 用 程 序 数 据,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,数据链路层剥去帧首部和帧尾部后,把帧的数据部分交给网络层,H,2,T,2,H,3,H,4,H,5,应 用 程 序 数 据,H,4,H,5,应 用 程 序 数 据,H,3,H,4,H,5,应 用 程 序 数 据,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,网络层剥去分组首部后,把分组的数据部分交给运输层,H,5,应 用 程 序 数 据,H,4,H,5,应 用 程 序 数 据,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,运输层剥去报文首部后,把报文的数据部分交给应用层,应 用 程 序 数 据,H,5,应 用 程 序 数 据,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,应用层剥去应用层,PDU,首部后,把应用程序数据交给应用进程,主机,1,向主机,2,发送数据,5,4,3,2,1,5,4,3,2,1,主机,1,AP,2,AP,1,主机,2,我收到了,AP,1,发来的,应用程序数据!,1.7.4,实体、协议、服务和服务访问点,实体,(entity),表示任何可发送或接收信息的硬件或软件进程。,协议是控制,两个对等实体,进行通信的规则的集合。,在协议的控制下,两个对等实体间的通信使得本层能够,向上一层提供服务,。,要实现本层协议,还需要使用,下层,所提供的服务。,实体、协议、服务和服务访问点(续),本层的服务用户只能看见服务而无法看见下面的协议。,下面的协议对上面的服务用户是,透明,的。,协议是“,水平的,”,即协议是控制对等实体之间通信的规则。,服务是“,垂直的,”,即服务是由下层向上层通过层间接口提供的。,同一系统相邻两层的实体进行交互的地方,称为,服务访问点,SAP,(Service Access Point),。,实体、协议、服务和服务访问点(续),协议,(n+1),SAP,SAP,交换原语,交换原语,实体,(n+1),服务提供者,第,n,层,第,n+1,层,实体,(n+1),服务用户,实体,(n),实体,(n),协议,(n),协议很复杂,协议必须把所有,不利的条件,事先都估计到,而,不能假定,一切都是正常的和非常理想的。,看一个计算机网络协议是否正确,不能光看在正常情况下是否正确,而且还必须非常仔细地检查这个协议,能否应付各种异常情况,。,著名的协议举例,【,例,1-1,】,占据东、西两个山顶的蓝军,1,和蓝军,2,与驻扎在山谷的白军作战。其力量对比是:单独的蓝军,1,或蓝军,2,打不过白军,但蓝军,1,和蓝军,2,协同作战则可战胜白军。现蓝军,1,拟于次日正午向白军发起攻击。于是用计算机发送电文给蓝军,2,。但通信线路很不好,电文出错或丢失的可能性较大(没有电话可使用)。因此要求收到电文的友军必须送回一个确认电文。但此确认电文也可能出错或丢失。试问能否设计出一种协议使得蓝军,1,和蓝军,2,能够实现协同作战因而一定(即,100%,而不是,99.999%,)取得胜利?,明日正午进攻,如何?,同意,收到“同意”,收到,:,收到“同意”,这样的协议无法实现!,结论,这样无限循环下去,两边的蓝军都始终无法确定自己最后发出的电文对方是否已经收到。,没有一种协议能够蓝军能,100%,获胜。,1.7.5 TCP/IP,的体系结构,应用层,运输层,网际层,网络,接口层,主机,A,主机,B,路由器,网络,2,网络,1,应用层,运输层,网际层,网络,接口层,网际层,网络,接口层,4,3,2,1,路由器在转发分组时最高只用到网络层,而没有使用运输层和应用层。,沙漏计时器形状的,TCP/IP,协议族,HTTP,SMTP,DNS,RTP,TCP,UDP,IP,网际层,网络接口层,运输层,应用层,网络接口,1,网络接口,2,网络接口,3,Everything over IP,IP,可为各式各样的应用程序提供服务,IP over Everything,IP,可应用到各式各样的网络上,【,例,1-2】,客户进程和服务器进程使用,TCP/IP,协议进行通信,数据链路层,物理层,运输层,网络层,数据链路层,物理层,运输层,网络层,客户发起连接建立请求,服务器接受连接建立请求,应用层,应用层,因特网,客户,服务器,以后就逐级使用下层,提供的服务,(,使用,TCP,和,IP,),功能较强的计算机可同时运行多个服务器进程,数据链路层,物理层,运输层,网络层,应用层,计算机,3,服务器,1,服务器,2,数据链路层,物理层,运输层,网络层,应用层,计算机,1,客户,1,数据链路层,物理层,运输层,网络层,应用层,计算机,2,客户,2,因特网,
展开阅读全文