1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2019/12/4,#,6.1,平方根,(第,2,课时),通过用有理数估计,的大小,得到,的越来越精确的近似值,进而给出,是无限不循环小数的结论这个估算过程既体现了估算平方根大小的一般方法,又为后面学习无理数作铺垫本节课对初步培养学生的估算意识,发展估算能力,起到重要的作用,.,课件说明,学习目标:,(,1,)用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义,(,2,)用计算器求一个非负数的算术平方根,学习重点:,能用有理数估计一个带算术平方根,符号的无理数的大致范围,课件说明,拼成的这个面积为
2、2,的大正方形的,边长应该是多少呢?,1,解决上节课提出的问题,?,有多大呢?,有多大呢?,你是怎样判断出,大于,1,而小于,2,的?,你能不能得到,的更精确的范围?,1,解决问题,大于,1,而小于,2,因为,,,而,,,所以,逼近法,有多大呢?,1,解决问题,因为,,而,,,所以,因为,,,而 ,所以,因为,,,而 ,所以,无限不循环小数,是指小数位数无限,且小数部分不循环的小数。,你以前有见过这种数吗?,1.414,2,1.415,2,=,1.4142135623730950,无限不循环小数,有多大呢,?,1,解决问题,你以前见过这种数吗?,例,1,用计算器求下列各式的值:,(1),;,
3、2),(精确到 ),解:,(1),依次按键,3136,显示,:,56,2,用计算器求算术平方根,(2),依次按键,2,显示:,1.414213562,你会表示 吗?,3,解决章引言中提出的问题,你知道宇宙飞船离开地球进入轨道正常运行的,速度在什么范围吗?这时它的速度要大于第一,宇宙速度,(单位:,)而小于第二宇宙速度,(单位:,),,,的大小满足,,,,其中,,,R,是地球半径,,怎样求,,,呢?,3,解决章引言中提出的问题,你会计算吗?,因此,第一宇宙速度,大约是,,,第二宇宙 速度,大约是,利用计算器计算,并将计算结果填在表中,你发现了什么规律?,4,探究规律,被开方数每扩大,100,倍
4、其算术平方根就扩大,10,倍,被开方数的小数点向右每移动,2,位,它的算术平,方根就向右移动一位,;,被开方数的小数点向左,每移动,2,位,它的算术平方根就向左移动一位,.,简单地说,:,你能用计算器计算 (精确到,0.001,)吗?,并利用刚才的得到规律说出 ,的近似值,你能否根据 的值说出 是多少?,4,应用规律,例,2,比较下列数的大小,:,5,例题讲解,解,:,(4)5,4,,,(,4,),(,1,),(,2,),(,3,),例,3,解下列各题,5,例题讲解,解,:,(,1,),(,2,),(,3,),(,4,),小丽想用一块面积为,400 cm,2,为的长方形纸片,沿着边的方向剪
5、出一块面积为,300 cm,2,的长方形纸片,使它的长宽之比为,3:2,她不知能否裁得出来,正在发愁小明见了说:,“,别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片,”,你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?,5,例题讲解,你能将这个问题转化为数学问题吗?,解:设剪出的长方形的两边长分别为,3,x,cm,和,2,x,cm,,则有,3,x,2,x,=300,,,6,x,2,=300,,,x,2,=50,,,,,故长方形纸片的长为,,宽为 ,5,例题讲解,长方形的长和宽与正方形的边长之间的大小关系是什么?小丽能用这块纸片裁出符合要求的纸片吗?,解:设剪出的长方形的两边长分别为,3,x,cm,和,2,x,cm,,则有,3,x,2,x,=300,,,6,x,2,=300,,,x,2,=50,,,,,故长方形纸片的长为,,宽为 ,5,例题讲解,因为,50,49,,得,7,,所以,37,21,,,比原正方形的边长更长,这是不可能的所以,小丽不能用这块纸片裁出符合要求的纸片,C,0.447 2,6,反馈练习,解:,5.,求 的近似值(精确到,0.000 1,),.,7,自我检测,举例说明如何估算算术平方根的大小,6,归纳小结,