收藏 分销(赏)

等离子体火炬处理固体废物的工作原理.doc

上传人:精**** 文档编号:10159520 上传时间:2025-04-24 格式:DOC 页数:4 大小:15.04KB
下载 相关 举报
等离子体火炬处理固体废物的工作原理.doc_第1页
第1页 / 共4页
等离子体火炬处理固体废物的工作原理.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
等离子体火炬处理固体废物的工作原理 等离子体火炬处理固体废物的工作原理 〔一〕等离子体的概念 等离子体是物质存在的第四态,它是气体电离后形成的,是由电子、离子、原子、分子或自由基等粒子组成的集合体,它具有宏观尺度内的电中性与高导电性。等离子体是极活泼的反应性物种,使通常条件下难以进行或速度很慢的反应变得快速,尤其有利于难消解污染物的处理。 在人工生成等离子体的方法中,气体放电法比加热的办法更加简便高效,诸如荧光灯、霓虹灯、电弧焊、电晕放电等等。 〔二〕等离子体的分类 按粒子的温度等离子体可分为两大类,热平衡等离子体(或热等离子体) 与非热平衡等离子体(或冷等离子体)。 冷等离子体的特征是它的能量密度较低,重粒子温度接近室温而电子温度却很高,电子与离子有很高的反应活性。相对地,热等离子体的能量密度很高,重粒子温度与电子温度相近,通常为10000K 至20000K 的数量级,各种粒子的反应活性都很高,本文后面所提到的等离子体如未特别说明即指热等离子体。 〔三〕等离子体的产生方法 热等离子体的产生方法,它包括大气压下电极间的交流(AC)与直流(DC)放电、常压电感耦合等离子体、常压微波放电等。下面介绍微波等离子体炬(microwave plasma torch): 微波等离子体炬〔MPT〕是一种开放结构的等离子体源,是由金钦汉等于1985年首先提出来,目前实验室常用的微波源是2.45GHz,MPT炬管是一个直接耦合的同轴波导微波谐振腔,腔内存在着固定的电场和磁场分布,而这种特定的能量分布维持了等离子体放电,将一段同轴线一端短路,另一端开路,就构成了同轴谐振腔。MPT炬管的内管和中管是相连通的终端短路活塞的存在使其成为一个同轴微波谐振腔,同轴谐振腔有三种耦合方式:直接耦合,电容耦合和电感耦合。直接耦合又称为电导耦合,其方法是在同轴腔外导体上开孔,将同轴传输线〔天线〕的内导体直接连接导同轴腔的内导体上,MPT炬管就是采纳的这种方式。当炬管顶端到调谐活塞端面的距离是λ/4的奇数倍时〔一般为3λ/4〕,顶端的电场为最强,就可在顶端形成和维持等离子体。电子科技大学高能所的微波等离子体火炬系统,微波的工作频率为2.45GHz,磁控管产生的微波通过波导系统、三端调配和短路活塞耦合到同轴传输线〔天线〕,并在离内管端口几厘米的地方形成特定的电磁场分布,从而使空气等工作气体电离形成等离子体火炬,图中的等离子体火炬的火焰长度只要几厘米,它的主要应用是金刚石薄膜、材料的表面改性、化学分析、纳米材料制备、废物处理等。 微波等离子体的参数: 工作频率: 2450± 工作范围: 100 Torr 至大气压 波导接口: BJ-26 微波等离子体炬设备组成: 磁控管提供能源 微波能从波导谐振腔引出 微波传输系统 喷嘴 微波等离子体火炬作为处理医疗垃圾系统可行性还值得进一步研究,因为它不仅可以利用等离子体火炬冲击、分解垃圾,还可以利用微波高效的热作用进行医疗垃圾的热解,达到高效的废物处理。 〔二〕等离子体火炬处理固体废物的应用 等离子体火炬,尤其是电弧等离子体火炬在医疗垃圾的应用已经开始,美国、日本、加拿大等发达国家和地区进行等离子体处理废物的研制和商品化进程已经进行几年时间,并已经开始了商品化应用。 下面是微波等离子体火炬处理固体废物的应用设想,利用它可处理:城市固态垃圾、淤泥、工业固废以及液态有机垃圾等。等离子体分解有机废物可得到氢气及一氧化碳,并可通过一个附属设备提取。它们可以用作化学原料去生产其它产品,如聚合物或其他化学产品。氢气是十分有价值的商业气体,可应用在多种制造日用品的工艺中,例如:氨及塑料、药物、维生素、食油等。它亦可为燃料电池提供能量。燃料电池被广泛认为是将来解决污染问题的洁净能源。从无机废物中得到的可再用的产品包括可用于冶金工业的合成金属,可用于建筑及研磨材料的玻璃状的硅石。 等离子体处理废物流程,在等离子体热处理系统中,主要设备是两台等离子体火炬,即第一气化室和第二气化室。 在处理废物时,垃圾首先被切碎并注入第一气化器〔等离子体热处理系统〕。工作温度在1800-1900K,300KW。减容比高:90%甚至95%以上。产生的等离子体火炬可以很快使有机物分解成一氧化碳和氢,无机物则变为玻璃状的硅石。 第二气化室〔加力燃烧室〕等离子体火炬可对第一气化室中合成气体中的一些残留微粒和一些碳氢化合物再进一步进行分解处理。 通过第二气化室处理后的混合气体经过净化系统后,成为只含H2和CO的混合气体,加力燃烧室在1000○C温度环境下对H2和CO的混合气体进一步进行处理,以确保无有害的混合物产生,比如二氧芑和呋喃等,最后排放到空气中。当然也可以取消加力燃烧室而利用这些混合气体去驱动汽轮机发电。 在第一气化器中垃圾的无机物部分熔化成玻璃状的无污染的炉渣,炉渣可安全用于建筑材料,依据不同的用途,炉渣可复原为各种形式。 三、等离子体处理废物的前景 与其他有竞争力的废物处理过程相比,热等离子体处理废物比较昂贵。而在一些特别类型的有毒废物处理问题上热等离子体处理具有独特的优势,因此等离子体主要用于焚烧炉难于处理的废物,包括被污染的陶瓷废物、高熔点金属、必需要治理的含有毒挥发成分的废气等。 等离子体进行废物处理的主要缺点在于以电力作为能源,经济成本高。此外,与传统废物处理方式相比,等离子体过程具有更多的过程控制参数,从而在过程控制中要求自动化程度很高。看来关于这种大规模的设备仍然缺乏一个坚实的工程基础。  
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服