ImageVerifierCode 换一换
格式:PPT , 页数:39 ,大小:599.50KB ,
资源ID:9949446      下载积分:12 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9949446.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(双曲型方程的差分方法.ppt)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

双曲型方程的差分方法.ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,双曲型方程的差分方程,1,第一节,一阶线性常系数双曲型方程,2,3,采用对流方程开始研究双曲型方程的数值解法的原因:,第一、对流方程非常简单,对它的研究是探讨更复杂,的双曲型方程(组)的基础。,第二、,尽管对流方程简单,但是通过它可以看到双,曲方程在数值计算中特有的性质和现象。,第三,利用它的特殊的、复杂的初值给定,完全可以,用来检验数值方法的效果和功能。,第四、它的差分格式可以推广到变系数双曲方程(组),以及非线性双曲方程领域。,4,几种典型的差分格式,迎风格式,Lax-Friedrichs,格式,Lax

2、Wendroff,格式,Courant-Friedrichs-Lewy,条件,利用特征线构造差分格式,隐式格式,蛙跳格式,5,迎风格式的思想,:,在对微商进行近似的时候,关于空间导数,用在特征线方向一侧的单边差商来代替,,于是有如下格式:,1,、迎风格式,6,7,迎风格式的性质:,1,、满足相容性,一阶精度,,截断误差为:,2,、条件稳定的,稳定性条件为:,3,、条件收敛的,收敛条件为:,8,所以此格式绝对不稳定,.,2,、,Lax-Friedrichs,格式,9,10,11,Lax-Friedrichs,格式的性质:,1,、满足相容性,一阶精度,,截断误差为:,2,、条件稳定的,稳定性条件

3、为:,3,、条件收敛的,收敛条件为:,12,两种格式的比较格式的比较,:,1,、它们的精度都是一阶的精度,在实际应用中,L-F,格式可以不考虑对应方程的特征线的走向,而迎风格式却要考虑其走向,.,注、如果迎风格式写成统一格式,也不必考虑特征线走向,,但多了绝对值的计算。,13,2,、比较截断误差,14,L-F,格式的右端项:,15,16,3,、,Lax-Wendroff,格式,1960,年,Lax,和,Wendroff,构造了一个二阶精度的二层格式。,构造的思想是利用,Taylor,展开式及方程本身。,17,代入上面的式子,于是有,18,得到:,略去高阶项得到差分方程:,Lax-Wendrof

4、f,格式,19,利用,Fourier,方法分析稳定性,得增长因子为:,20,Lax-Wendroff,格式的性质:,1,、满足相容性,二阶精度,,截断误差为:,2,、条件稳定的,稳定性条件为:,3,、条件收敛的,收敛条件为:,21,4,、,Courant-Friedrichs-Lewy,条件,由差分方程解的依赖区域与微分方程解的依赖区域,的关系导出的差分方程收敛的必要条件,注:即差分方程解的依赖区域包含微分方程解的依赖区域,22,注、,Courant,条件是保证稳定性(收敛性),的必要条件,而非充分条件。,例如:针对一维对流方程的差分格式的,CFL,条件(,a,0,),右偏格式,:,显然,微分

5、方程的依赖区域在差分方程的依赖区域之外,,不满足,CFL,条件,所以格式不稳定。,左偏格式(迎风格式),:,实际上 也是稳定性的充分条件,23,中心格式:,格式不稳定,所以,CFL,条件不是稳定性的充分条件,Lax-Wendroff,格式:,实际上 也是稳定性的充分条件,24,5,、利用特征线构造差分格式,25,26,27,28,Beam-Warming,格式,29,30,6,、隐式格式,隐式中心,31,隐式中心格式的性质:,1,、满足相容性,对时间一阶,对空间二阶精度,,截断误差为:,2,、无条件条件稳定,3,、无条件收敛,注、计算上需要人工边界条件,32,33,Grank-Nicolson

6、格式的性质:,1,、满足相容性,二阶精度,,截断误差为:,2,、无条件条件稳定,3,、无条件收敛,注、计算上需要人工边界条件,34,7,、蛙跳(,leap,flog,)格式,35,分析稳定性的,Fourier,方法适用于二层格式,,所以 把 三层格式化为二层格式,36,注:容易验证增长矩阵不是正规矩阵,所以,Neumann,条件是满足稳定性的必要条件。,37,38,蛙跳格式的性质:,1,、满足相容性,二阶精度,,截断误差为:,2,、条件稳定的,稳定性条件为:,3,、条件收敛的,收敛条件为:,注:蛙跳格式形式简单,二阶精度格式。,三层格式,需要二阶的起步格式,如,Lax-Wendroff,格式,39,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服