ImageVerifierCode 换一换
格式:PPTX , 页数:43 ,大小:3.61MB ,
资源ID:9947087      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9947087.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(如何教好数据挖掘课程省名师优质课赛课获奖课件市赛课百校联赛优质课一等奖课件.pptx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

如何教好数据挖掘课程省名师优质课赛课获奖课件市赛课百校联赛优质课一等奖课件.pptx

1、

Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,2022年10月19日星期三,Data Mining:Concepts and Techniques,#,1,1,Data MiningA Fast Expanding Frontier:How to Teach a Data Mining Class?,In celebration of the Publication of the Chinese Tran

2、slation of the 3,rd,Edition of Data Mining:Concepts and Techniques,by,Jiawei Han,Micheline Kamber,and Jian Pei,Morgan Kaufman 2023,第1页,2,Why Is Data Mining a New Science?,The explosive growth of data:from terabytes to petabytes,Data collection and data availability,Automated data collection tools,da

3、tabase systems,Web,computerized society,Major sources of abundant data,Business:Web,e-commerce,transactions,stocks,Science:Remote sensing,bioinformatics,scientific simulation,Society and everyone:news,digital cameras,YouTube,We are drowning in data,but starving for knowledge!,“Necessity is the mothe

4、r of invention”,:,Data miningAutomated analysis of massive data sets,第2页,3,Evolution of Sciences:New Data Science Era,Before 1600:,Empirical science,1600-1950s:,Theoretical science,Each discipline has grown a,theoretical,component.Theoretical models often motivate experiments and generalize our unde

5、rstanding.,1950s-1990s:,Computational science,Over the last 50 years,most disciplines have grown a third,computational,branch(e.g.empirical,theoretical,and computational ecology,or physics,or linguistics.),Computational Science traditionally meant simulation.It grew out of our inability to find clos

6、ed-form solutions for complex mathematical models.,1990-now:,Data science,The flood of data from new scientific instruments and simulations,The ability to economically store and manage petabytes of data online,The Internet and computing Grid that makes all these archives universally accessible,Scien

7、tific info.management,acquisition,organization,query,and visualization tasks scale almost linearly with data volumes,Data mining,is a major new challenge!,Jim Gray and Alex Szalay,The World Wide Telescope:An Archetype for Online Science,Comm.ACM,45(11):50-54,Nov.2023,第3页,4,A Brief History of Data Mi

8、ning Society,1989 IJCAI Workshop on Knowledge Discovery in Databases,Knowledge Discovery in Databases(G.Piatetsky-Shapiro and W.Frawley,1991),1991-1994 Workshops on Knowledge Discovery in Databases,Advances in Knowledge Discovery and Data Mining(U.Fayyad,G.Piatetsky-Shapiro,P.Smyth,and R.Uthurusamy,

9、1996),1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining(KDD95-98),Journal of Data Mining and Knowledge Discovery(1997),ACM SIGKDD conferences since 1998 and SIGKDD Explorations,More conferences on data mining,PAKDD(1997),PKDD(1997),SIAM-Data Mining(2023),(IEEE)I

10、CDM(2023),WSDM(2023),etc.,ACM Transactions on KDD(2023),第4页,5,A Brief History of This Data Mining Book,My first paper on data mining:1989 IJCAI Workshop on Knowledge Discovery in Databases,PC co-chairman,1996(2nd)Int.Conf.on Knowledge Discovery and Data Mining(KDD96),Discussion of the book:1996 ACM-

11、SIGMOD Conference Tutorial:“Data Mining Techniques”,Montreal,Canada,June 1996,1,st,edition of the book:Jiawei Han and Micheline Kamber,Data Mining:Concepts and Techniques,(Foreword by Jim Gray),Morgan Kaufmann,2023,2,nd,edition:Jiawei Han and Micheline Kamber,Data Mining:Concepts and Techniques,(For

12、eword by Jim Gray),2,nd,ed.,Morgan Kaufmann,2023,3,rd,edition:Jiawei Han,Micheline Kamber,and Jian Pei:Data Mining:Concepts and Techniques,(Foreword by Christos Faloutsos),3,rd,ed.,Morgan Kaufmann,2023,第5页,6,6,Data and Information Systems(DAIS:)Course Structures at CS/UIUC,Coverage:Database,data min

13、ing,text information systems,Web and bioinformatics,Data mining,Intro.to data warehousing and mining,(CS412:Han,Fall,),Data mining:Principles and algorithms,(CS512:Han,Spring,),Seminar:Advanced Topics in Data mining(CS591Han,Fall and Spring.1 credit unit),Independent Study:only if you seriously plan

14、 to do your Ph.D./M.S.on data mining and try to demonstrate your ability,Database Systems:,Introd.to database systems(CS411:Kevin Chang+Others:,Fall and Spring,),Advanced database systems(CS511:Kevin Chang,Fall11,),Text information systems,Text information system(CS410 ChengXiang Zhai:,Spring,),Bioi

15、nformatics,Introduction to BioInformatics(Saurabh Sinha),CS591 Seminar on Bioinformatics(Sinha:1 credit unit),Yahoo!-DAIS seminar(CS591DAIS,Fall and Spring.1 credit unit),第6页,7,7,CS412 Coverage(Chapters 1-7 of the TextBook),CS412 Coverage(BK2:2,nd,Ed.),Introduction,Data Preprocessing,Data Warehouse

16、and OLAP Technology:An Introduction,Advanced Data Cube Technology and Data Generalization,Mining Frequent Patterns,Association and Correlations,Classification and Prediction,Cluster Analysis,CS412 Coverage(BK3:3,rd,ed.),Introduction,Getting to Know Your Data,Data Preprocessing,Data Warehouse and OLA

17、P Technology:An Introduction,Advanced Data Cube Technology,Mining Frequent Patterns&Association:Basic Concepts,Mining Frequent Patterns&Association:Advanced Methods,Classification:Basic Concepts,Classification:Advanced Methods,Cluster Analysis:Basic Concepts,The textbook book will be covered

18、 in two courses at CS,UIUC,CS412:,Introduction to Data Mining,(,Fall,)Chapters 1-10,CS512:,Data Mining:Principles and Algorithms,(,Spring,)Chaps.11-13,第7页,8,8,CS512 Coverage(Chapters 11,12,13+More Advanced Topics),Cluster Analysis:Advanced Methods(Chapter 11),Outlier Analysis(Chapter 12),Mining data

19、 streams,time-series,and sequence data,Mining graph data,Mining social and information networks,Mining object,spatial,multimedia,text and Web data,Mining complex data objects,Spatial and spatiotemporal data mining,Multimedia data mining,Text and,Web mining,Additional(often current)themes if time per

20、mits,第8页,9,9,第9页,10,10,第10页,第11页,第12页,13,13,CS 412.Course Page&Class Schedule,Class Homepage:,https:/wiki.engr.illinois.edu/display/cs412,Wiki course outline,Course Information,Course Schedule,Lecture media,Assignments,Resources and Reading Lists,Staff,Project Only for students taking 4 credits

21、for the course,Comments and Suggestions,Textbook,Slides,Class Presentation,and Teaching,Class-Related Questions and Answers,第13页,14,14,CS 412:Course Project 4,th,credit,Survey:,Writing a comprehensive survey on a focused topic,e.g.,clustering heterogeneous information networks,Quiz maker:,Making exc

22、ellent quiz questions and answers for selected chapters of the course(Chapters 1-10),Software maker:,Implementing one high-performance,fully documented open source data mining function for those taught in the book,in Java/C+,including user-interfaces and visualization packageNote:No plagiarism!,Answ

23、er book maker:,Enhancing and making answers for exercise questions in the bookAssigned to three students already,第14页,15,Chapter 1.Introduction,Why Data Mining?,What Is Data Mining?,A Multi-Dimensional View of Data Mining,What Kind of Data Can Be Mined?,What Kinds of Patterns Can Be Mined?,What Tech

24、nology Are Used?,What Kind of Applications Are Targeted?,Major Issues in Data Mining,A Brief History of Data Mining and Data Mining Society,Summary,第15页,16,Data Mining:Confluence of Multiple Disciplines,Data Mining,Machine,Learning,Statistics,Applications,Algorithm,Pattern,Recognition,High-Performan

25、ce,Computing,Visualization,Database,Technology,第16页,17,Conferences and Journals on Data Mining,KDD Conferences,ACM SIGKDD Int.Conf.on Knowledge Discovery in Databases and Data Mining(,KDD,),SIAM Data Mining Conf.(,SDM,),(IEEE)Int.Conf.on Data Mining(,ICDM,),European Conf.on Machine Learning and Prin

26、ciples and practices of Knowledge Discovery and Data Mining(,ECML,-,PKDD,),Pacific-Asia Conf.on Knowledge Discovery and Data Mining(,PAKDD,),Int.Conf.on Web Search and Data Mining(,WSDM,),Other related conferences,DB conferences:ACM SIGMOD,VLDB,ICDE,EDBT,ICDT,Web and IR conferences:WWW,SIGIR,WSDM,ML

27、 conferences:ICML,NIPS,PR conferences:CVPR,Journals,Data Mining and Knowledge Discovery(DAMI or DMKD),IEEE Trans.On Knowledge and Data Eng.(TKDE),KDD Explorations,ACM Trans.on KDD,第17页,18,Where to Find References?DBLP,CiteSeer,Google,Data mining and KDD(SIGKDD:CDROM),Conferences:ACM-SIGKDD,IEEE-ICDM

28、SIAM-DM,PKDD,PAKDD,etc.,Journal:Data Mining and Knowledge Discovery,KDD Explorations,ACM TKDD,Database systems(SIGMOD:ACM SIGMOD Anthology,CD ROM),Conferences:ACM-SIGMOD,ACM-PODS,VLDB,IEEE-ICDE,EDBT,ICDT,DASFAA,Journals:IEEE-TKDE,ACM-TODS/TOIS,JIIS,J.ACM,VLDB J.,Info.Sys.,etc.,AI&Machine Learni

29、ng,Conferences:Machine learning(ML),AAAI,IJCAI,COLT(Learning Theory),CVPR,NIPS,etc.,Journals:Machine Learning,Artificial Intelligence,Knowledge and Information Systems,IEEE-PAMI,etc.,Web and IR,Conferences:SIGIR,WWW,CIKM,etc.,Journals:WWW:Internet and Web Information Systems,Statistics,Conferences:J

30、oint Stat.Meeting,etc.,Journals:Annals of statistics,etc.,Visualization,Conference proceedings:CHI,ACM-SIGGraph,etc.,Journals:IEEE Trans.visualization and computer graphics,etc.,第18页,19,Recommended Reference Books,E.Alpaydin.Introduction to Machine Learning,2nd ed.,MIT Press,2023,S.Chakrabarti.Minin

31、g the Web:Statistical Analysis of Hypertex and Semi-Structured Data.Morgan Kaufmann,2023,R.O.Duda,P.E.Hart,and D.G.Stork,Pattern Classification,2ed.,Wiley-Interscience,2023,T.Dasu and T.Johnson.Exploratory Data Mining and Data Cleaning.John Wiley&Sons,2023,U.M.Fayyad,G.Piatetsky-Shapiro,P.Smyth,

32、and R.Uthurusamy.Advances in Knowledge Discovery and Data Mining.AAAI/MIT Press,1996,U.Fayyad,G.Grinstein,and A.Wierse,Information Visualization in Data Mining and Knowledge Discovery,Morgan Kaufmann,2023,J.Han and M.Kamber.Data Mining:Concepts and Techniques.Morgan Kaufmann,2,nd,ed.,2023(3ed.2023),

33、T.Hastie,R.Tibshirani,and J.Friedman,The Elements of Statistical Learning:Data Mining,Inference,and Prediction,2,nd,ed.,Springer-Verlag,2023,B.Liu,Web Data Mining,Springer 2023.,T.M.Mitchell,Machine Learning,McGraw Hill,1997,P.-N.Tan,M.Steinbach and V.Kumar,Introduction to Data Mining,Wiley,2023,S.M

34、Weiss and N.Indurkhya,Predictive Data Mining,Morgan Kaufmann,1998,I.H.Witten and E.Frank,Data Mining:Practical Machine Learning Tools and Techniques with Java Implementations,Morgan Kaufmann,2,nd,ed.2023,第19页,20,Chapter 2:Getting to Know Your Data,Data Objects and Attribute Types,Basic Statistical

35、Descriptions of Data,Data Visualization,Measuring Data Similarity and Dissimilarity,Summary,第20页,21,21,Chapter 3:Data Preprocessing,Data Preprocessing:An Overview,Data Quality,Major Tasks in Data Preprocessing,Data Cleaning,Data Integration,Data Reduction,Data Transformation and Data Discretization,

36、Summary,第21页,22,Chapter 4:Data Warehousing and On-line Analytical Processing,Data Warehouse:Basic Concepts,Data Warehouse Modeling:Data Cube and OLAP,Data Warehouse Design and Usage,Data Warehouse Implementation,Data Generalization by Attribute-Oriented Induction,Summary,第22页,23,23,Chapter 5:Data Cu

37、be Technology,Data Cube Computation:Preliminary Concepts,Data Cube Computation Methods,Processing Advanced Queries by Exploring Data Cube Technology,Multidimensional Data Analysis in Cube Space,Summary,第23页,24,Chapter 6:Mining Frequent Patterns,Association and Correlations:Basic Concepts and Methods

38、Basic Concepts,Frequent Itemset Mining Methods,Which Patterns Are Interesting?Pattern Evaluation Methods,Summary,第24页,25,Chapter 7:Advanced Frequent Pattern Mining,Pattern Mining:A Road Map,Pattern Mining in Multi-Level,Multi-Dimensional Space,Constraint-Based Frequent Pattern Mining,Mining High-Di

39、mensional Data and Colossal Patterns,Mining Compressed or Approximate Patterns,Pattern Exploration and Application,Summary,第25页,26,Chapter 8.Classification:Basic Concepts,Classification:Basic Concepts,Decision Tree Induction,Bayes Classification Methods,Rule-Based Classification,Model Evaluation and

40、 Selection,Techniques to Improve Classification Accuracy:Ensemble Methods,Summary,第26页,27,Chapter 9.Classification:Advanced Methods,Bayesian Belief Networks,Classification by Backpropagation,Support Vector Machines,Classification by Using Frequent Patterns,Lazy Learners(or Learning from Your Neighbo

41、rs),Other Classification Methods,Additional Topics Regarding Classification,Summary,第27页,28,Chapter 10.,Cluster Analysis:Basic Concepts and Methods,Cluster Analysis:Basic Concepts,Partitioning Methods,Hierarchical Methods,Density-Based Methods,Grid-Based Methods,Evaluation of Clustering,Summary,28,第

42、28页,29,29,How to Teach a Data Mining Undergraduate Class Using This Book?,Select only part of the materials in the book to teach,For a machine learning flavored class,Omit in-depth materials on data warehouse+data cube technology,Treat light on association and correlation mining,For a database flavo

43、red class,Omit advanced clustering,outlier analysis,etc.,For both classes,Leave advanced clustering,mining complex data typed in the second class on data mining,Select materials based on the preparation and background of students,Regular assignment and exams will be important to digest materials,Pro

44、gramming assignments will help,Motivate students based on your data and application needs,第29页,30,Chapter 11.,Cluster Analysis:Advanced Methods,Probability Model-Based Clustering,Clustering High-Dimensional Data,Clustering Graphs and Network Data,Clustering with Constraints,Summary,30,第30页,31,Chapte

45、r 12.,Outlier Analysis,Outlier and Outlier Analysis,Outlier Detection Methods,Statistical Approaches,Proximity-Base Approaches,Clustering-Base Approaches,Classification Approaches,Mining Contextual and Collective Outliers,Outlier Detection in High Dimensional Data,Summary,第31页,32,32,Topic Coverage o

46、f CS512,Textbook:Han,Kamber,Pei.Data Mining:Concepts and Techniques.Morgan Kaufmann,3,rd,ed.2023,Chaps.1-10:covered in CS412,Chaps.11-12:CS512(Chap.13:self reading),Chap.11:Advanced Clustering Methods,Chap.12:Outlier Analysis,Additional themes to be covered in 2023 Spring,Introduction to network ana

47、lysis(ref:Newman,2023 textbook),Mining information networks(ref:research papers+slides),Mining data streams(ref.2,nd,ed.Textbook(BK2):Chap.8),Mining sequence and time-series patterns(ref.BK2:Chap.8),Graph mining:patterns&classifications(ref.BK2:Chap.9),Spatiotemporal and moving object data minin

48、g(ref:BK2:Chap.10),Not covered,:Text/Web mining,etc.(ref:BK2:Chap.10,Prof.Zhais classes),第32页,33,Course Work:Assignments,Exams and Course Project,Assignments:,10%(2 assignments),Two Midterm exams,:40%in total(20%each),Survey and research project proposals,:(0%)A 1-2 page proposal on survey+research

49、project will be due at the end of 5,th,week,Survey report,:20%,Encourage to have similar topic as your research topic,Hand-in together with a set of companion presentation slides Hand in Monday,11,th,week:right after the Spring break!,Selected surveys will be presented at the 12,th,week of class,Fin

50、al course project:,30%(due at the end of semester),The final project will be evaluated based on(1)technical innovation,(2)thoroughness of the work,and(3)clarity of presentation,The final project will need to hand in:(1)project report(length will be similar toa typical 8-12 page double-column conference paper),and(2)project pr

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服