ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:254KB ,
资源ID:9904659      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9904659.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(本科毕业论文---基于数据挖掘的国际贸易客户流失的预测分析.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

本科毕业论文---基于数据挖掘的国际贸易客户流失的预测分析.doc

1、 基于数据挖掘的国际贸易客户流失的预测分析 目 录 1 前言………………………………………………………………………………2 1.1 设计背景………………………………………………………………………2 1.2 数据挖掘简介…………………………………………………………………2 1.3 决策树ID3和C4.5算法简介……………………………………………… 3 2 客户数据训练集的预处理………………………………………………………3 2.1 选择训练集……………………………………………………………………4 2.2 去除训练集的冗余数据………………………………………………………4 2.3

2、训练集中连续值的离散化……………………………………………………4 3 结合信息增益和信息增益率进行决策树归纳…………………………………6 3.1计算对D中元组分类所需的期望信息………………………………………6 3.2计算每个属性的期望信息需求(即信息熵)………………………………7 3.3 计算每个属性的信息增益率………………………………………………14 4 构建决策树……………………………………………………………………16 4.1 构建根节点决策树…………………………………………………………16 4.2 构建最终决策树……………………………………………………………17 5 客户

3、群流失的预测和分析……………………………………………………17 6 总结……………………………………………………………………………18 结束语……………………………………………………………………………18 致谢………………………………………………………………………………18 参考文献…………………………………………………………………………18 附录………………………………………………………………………………19 基于数据挖掘的国际贸易客户流失的预测分析 摘要:企业客户流失是一个企业最大的损失,但大部分企业并未找到一个切实有效的方法来解决这个问题,文章从数据挖掘角度,利用关联

4、规则对国际贸易客户流失的预测进行一些分析,找出流失率比较高的并有价值的客户群体的特点,为企业提供一些具体策略来减少客户流失,最终获得较大的经济效益! 关键词:数据挖掘 客户流失 决策树 ID3算法 c4.5算法 离散化 Abstract:Loss of business customers are the biggest loss of an enterprise, but most enterprises have Nt found an effective way to solve this problem, data mining article from the point of

5、view, the use of association rules on international trade the loss of customers to conduct some analysis of the prediction to identify the loss of relatively high rate and valuable characteristics of client groups, providing a number of specific strategies to reduce the loss of customers, and ultima

6、tely the ecoNmic benefits of a larger. Keywords: Data Mining,The loss of customers, Decision Tree, ID3 algorithm,c4.5 algorithm, Discretization 2 1 前言 1.1 设计背景 随着中国加入世贸组织,互联网信息化高速发展带来的机遇,有着越来越多的企业或者个人)参加到国际贸易当中并从中获利,在营销和推广的手段的多元化的同时,客户群成了一个非常不稳定的群体,商人无非重视的是个利字,那么这些客户群很有可能会流向竞争对手那里,那么如何提升公司客户

7、群的忠诚度就成为了首要解决的问题,为了满足外贸企业和外贸soho对客户流的需求以及掌控,由于数据量的复杂,也就非常有必要开发一个基于数据挖掘的国际贸易客户流失数据预测处理系统来来管理客户数据和预防客户的流失,这样不仅可以及时检测到客户的流失动向和原因,而且也为外贸企业外贸soho提供了更加快捷的方式来尽量减少客户端流失。 1.2 数据挖掘简介 数据挖掘(data mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。随着信息技术的高速发展,人们积累的数据量急剧增长,动辄以tb计,如何从海量的数据中提取有用的知

8、识成为当务之急。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术,是知识发现(kNwledge discovery in database)的关键步骤. 1.3 决策树ID3与C4.5算法简介 ID3算法是J.Ross Quinlan开发的一种数据挖掘[1]决策树算法[2]【3】,后来C4.5(ID3的后继),成为新的监督学习算法,两者都采用贪心非回溯的方法,其中决策树以自顶向下递归的分治方法,从训练元祖集和它们的相关联的类标号开始构造决策树,随着树的构建,训练集递归地划分成较小的子集,并分别引进信息增益和信息增益率来进行构造决策树。 2 客户数据训练集的预处理 由于数据挖掘的

9、对象是大量的数据,非常的庞乱繁杂,所以非常有必要将这些数据进行预处理[4] [5],以适用于挖掘,这需要三个步骤 2.1选择训练集 将不相关的数据剔除掉,只保留一些与挖掘有关的,比如姓名 电话号码,地址,取值太多,如果进行概化,将大于概化阀值,所以予以删除,还有对以前输入的数据不完整的,不规范的,也不予以选取,将予以剔除,还有一些属性关联比较密切的[6],可以删除个别,只留下代表属性。 2.2 去除训练集的冗余数据 从逻辑上判断一些属性对训练集类属性结果不相关的,还有一些属性关联比较密切的,可以删除掉一个,从而极大的提高计算的效率和准确度,因为一些不相关的属性可能导致数据挖掘的准确度

10、下降,以表一为例,成功率基本上都大于90%,但是跟数据挖掘的结果没有必然联系,将可能导致数据挖掘的准确度下降比如交易次数,交易总额,所以予以删除,另外支付宝担保交易付款和银行转帐付款关联性大于90%,将支付宝担保交易属性也予以删除。 2.3 训练集中连续值的离散化 将连续的数值进行离散化处理,如年龄分为三类: A1:<20 A2: 20—30 A3 : >30 可以将订购款式分为四类, B1:板鞋 B2: 帆布鞋 B3 :跑鞋 B4 综合各种款式 属性年龄简称A 订购款式简称B 批发简称C

11、 学生简称 D 银行汇款简称E 结合上面归纳,给出转化后的训练集表一 ,并给出相关的数据库图表,见图一,二 编号 年龄A 订购款式B 批发C 学生D 银行转帐E 流失 1 A2 B1 Y N Y N 2 A2 B3 N Y Y Y 3 A3 B1 N N Y N 4 A1 B2 N Y Y N 5 A3 B2 N Y N N 6 A1 B2 N Y N N 7 A3 B4 Y N Y N 8 A3 B3 Y N Y N 9 A1 B

12、2 N Y N Y 10 A3 B4 Y N Y N 11 A2 B2 N Y Y N 12 A1 B4 Y N Y Y 13 A2 B2 N Y Y Y 14 A1 B1 N Y N N 15 A2 B1 Y Y Y N 16 A3 B3 N N N Y 17 A2 B3 Y N Y Y 18 A1 B4 N N Y Y 19 A2 B4 Y N Y Y 20 A3 B1 N N N Y 表一 经过预处理对客户数据训练集

13、 图一 创建的数据库 tradedb 图二 数据库中的trade 表数据 3 结合信息增益和信息增益率进行决策树归纳 3.1计算对D中元组分类所需的期望信息 表一给出了一个类标记的元组的训练集D,每个属性都是离散值(连续值属性已经被离散化),类标号属性“是否流失”有两类,(即m=2),设类c1对应Y 类c2对应N,类C1有11个元组,类C2有9个元组,由D中的元组创建(根)节点N,为了找出这些元组的分裂准则,必须计算每个属性的信息增益, 计算对D中元组分类所需的期望信息(即信息熵): Info(D)= - log2(Pi) 其中Pi是D中的任意元组属于Ci 的概率

14、并用|Ci,D|/|D|估计, 使用vb.Net 构造的函数代码如下: Public Function tradefuc(ByVal a, ByVal b) As String Dim k As String k = a + b tradefuc = -a / k * Log(a / k) / Log(2) - b / k * Log(b / k) / Log(2) If a = 0 Then tradefuc = -b / k * Log(b / k) / Log(2)

15、End If If b = 0 Then tradefuc = -a / k * Log(a / k) / Log(2) End If End Function 计算对D中元组分类所需的期望信息: Info(D)= - log2(Pi)=0.992774453987808 源代码如下 '客户流失 Dim t1 As Double Dim sCon1 As String = "Select Count(*) From trade where 流失= 'Y'" s

16、Com.Connection = sCon sCon.Open() sCom.CommandText = sCon1 t1 = sCom.ExecuteScalar Dim t2 As Double Dim sCon2 As String = "Select Count(*) From trade where 流失= 'N'" sCom.Connection = sCon sCom.CommandText = sCon2 t2 = sCom.Execu

17、teScalar '计算训练集D中元组分类的期望信息 Dim I As Double I = tradefuc(t1, t2) 计算如图三 图三 计算Info(D)的值 3.2 计算每个属性的期望信息需求(即信息熵): 从属性age开始,查询age各个属性对应的流失是否个数,并计算它的信息增益 Info年龄(D)=0.00196975696587331 '年龄 Dim age1 As Double Dim ageCon1 As String ageCon1 = "S

18、elect Count(*) from trade where 年龄='A1' " sCom.Connection = sCon sCom.CommandText = ageCon1 age1 = sCom.ExecuteScalar Dim age11 As Double Dim ageCon11 As String ageCon11 = "Select Count(*) from trade where 年龄='A1' and 流失='Y' " sCom.Con

19、nection = sCon sCom.CommandText = ageCon11 age11 = sCom.ExecuteScalar Dim age12 As Double Dim ageCon12 As String ageCon12 = "Select Count(*) from trade where 年龄='A1' and 流失='N' " sCom.Connection = sCon sCom.CommandText = ageCon12

20、 age12 = sCom.ExecuteScalar Dim age2 As Double Dim ageCon2 As String ageCon2 = "Select Count(*) from trade where 年龄='A2' " sCom.Connection = sCon sCom.CommandText = ageCon2 age2 = sCom.ExecuteScalar Dim age21 As Double Di

21、m ageCon21 As String ageCon21 = "Select Count(*) from trade where 年龄='A2' and 流失='Y' " sCom.Connection = sCon sCom.CommandText = ageCon21 age21 = sCom.ExecuteScalar Dim age22 As Double Dim ageCon22 As String ageCon22 = "Select Count(*)

22、 from trade where 年龄='A2' and 流失='N' " sCom.Connection = sCon sCom.CommandText = ageCon22 age22 = sCom.ExecuteScalar Dim age3 As Double Dim ageCon3 As String ageCon3 = "Select Count(*) from trade where 年龄='A3' " sCom.Connection = sCo

23、n sCom.CommandText = ageCon3 age3 = sCom.ExecuteScalar Dim age31 As Double Dim ageCon31 As String ageCon31 = "Select Count(*) from trade where 年龄='A3' and 流失='Y' " sCom.Connection = sCon sCom.CommandText = ageCon31 age31 = sCo

24、m.ExecuteScalar Dim age32 As Double Dim ageCon32 As String ageCon32 = "Select Count(*) from trade where 年龄='A3' and 流失='N' " sCom.Connection = sCon sCom.CommandText = ageCon32 age32 = sCom.ExecuteScalar '计算年龄的信息增益 Dim Iage1 As

25、 Double Iage1 = tradefuc(age11, age12) Dim Iage2 As Double Iage2 = tradefuc(age21, age22) Dim Iage3 As Double Iage3 = tradefuc(age31, age32) Dim Iage As Double Iage = age1 / t * Iage1 + age2 / t * Iage2 + age3 / t * Iage3 Dim Ga

26、inage As Double Gainage = I - Iage 类似的,Gain(订购款式)的代码如下 '订购款式 Dim dg1 As Double Dim dgCon1 As String dgCon1 = "Select Count(*) from trade where 订购款式='B1' " sCom.Connection = sCon sCom.CommandText = dgCon1 dg1 = sCom.ExecuteScalar

27、 Dim dg11 As Double Dim dgCon11 As String dgCon11 = "Select Count(*) from trade where 订购款式='B1' and 流失='Y' " sCom.Connection = sCon sCom.CommandText = dgCon11 dg11 = sCom.ExecuteScalar Dim dg12 As Double Dim dgCon12 As String

28、 dgCon12 = "Select Count(*) from trade where 订购款式='B1' and 流失='N' " sCom.Connection = sCon sCom.CommandText = dgCon12 dg12 = sCom.ExecuteScalar Dim dg2 As Double Dim dgCon2 As String dgCon2 = "Select Count(*) from trade where 订购款式='B2' "

29、 sCom.Connection = sCon sCom.CommandText = dgCon2 age2 = sCom.ExecuteScalar Dim dg21 As Double Dim dgCon21 As String dgCon21 = "Select Count(*) from trade where 订购款式='B2' and 流失='Y' " sCom.Connection = sCon sCom.CommandText =

30、dgCon21 dg21 = sCom.ExecuteScalar Dim dg22 As Double Dim dgCon22 As String dgCon22 = "Select Count(*) from trade where 订购款式='B2' and 流失='N' " sCom.Connection = sCon sCom.CommandText = dgCon22 dg22 = sCom.ExecuteScalar Dim

31、dg3 As Double Dim dgCon3 As String dgCon3 = "Select Count(*) from trade where 订购款式='B3' " sCom.Connection = sCon sCom.CommandText = dgCon3 dg3 = sCom.ExecuteScalar Dim dg31 As Double Dim dgCon31 As String dgCon31 = "Select Cou

32、nt(*) from trade where 订购款式='B3' and 流失='Y' " sCom.Connection = sCon sCom.CommandText = dgCon31 dg31 = sCom.ExecuteScalar Dim dg32 As Double Dim dgCon32 As String dgCon32 = "Select Count(*) from trade where 订购款式='B3' and 流失='N' " sCom.

33、Connection = sCon sCom.CommandText = dgCon32 dg32 = sCom.ExecuteScalar Dim dg4 As Double Dim dgCon4 As String dgCon4 = "Select Count(*) from trade where 订购款式='B4' " sCom.Connection = sCon sCom.CommandText = dgCon4 dg4 = sCom.E

34、xecuteScalar Dim dg41 As Double Dim dgCon41 As String dgCon41 = "Select Count(*) from trade where 订购款式='B4' and 流失='Y' " sCom.Connection = sCon sCom.CommandText = dgCon41 dg41 = sCom.ExecuteScalar Dim dg42 As Double Dim dgCo

35、n42 As String dgCon42 = "Select Count(*) from trade where 订购款式='B4' and 流失='N' " sCom.Connection = sCon sCom.CommandText = dgCon42 dg42 = sCom.ExecuteScalar '计算订购款式的信息增益 Dim Idg1 As Double Idg1 = tradefuc(dg11, dg12) Dim Idg

36、2 As Double Idg2 = tradefuc(dg21, dg22) Dim Idg3 As Double Idg3 = tradefuc(dg31, dg32) Dim Idg4 As Double Idg4 = tradefuc(dg41, dg42) Dim Idg As Double Idg = age1 / t * Idg1 + dg2 / t * Idg2 + dg3 / t * Idg3 + dg4 / t * Idg4 Dim

37、 Gaindg As Double Gaindg = I - Idg Gain(批发)的源代码如下 '批发 Dim pifa1 As Double Dim pifaCon1 As String pifaCon1 = "Select Count(*) from trade where 批发='Y' " sCom.Connection = sCon sCom.CommandText = pifaCon1 pifa1 = sCom.ExecuteScalar

38、 Dim pifa11 As Double Dim pifaCon11 As String pifaCon11 = "Select Count(*) from trade where 批发='Y' and 流失='Y' " sCom.Connection = sCon sCom.CommandText = pifaCon11 pifa11 = sCom.ExecuteScalar Dim pifa12 As Double Dim pifaCon1

39、2 As String pifaCon12 = "Select Count(*) from trade where 批发='Y' and 流失='N' " sCom.Connection = sCon sCom.CommandText = pifaCon12 pifa12 = sCom.ExecuteScalar Dim pifa2 As Double Dim pifaCon2 As String pifaCon2 = "Select Count(*) from t

40、rade where 批发='N' " sCom.Connection = sCon sCom.CommandText = pifaCon2 pifa2 = sCom.ExecuteScalar Dim pifa21 As Double Dim pifaCon21 As String pifaCon21 = "Select Count(*) from trade where 批发='N' and 流失='Y' " sCom.Connection = sCon

41、 sCom.CommandText = pifaCon21 pifa21 = sCom.ExecuteScalar Dim pifa22 As Double Dim pifaCon22 As String pifaCon22 = "Select Count(*) from trade where 批发='N' and 流失='N' " sCom.Connection = sCon sCom.CommandText = pifaCon22 pifa22 =

42、sCom.ExecuteScalar '计算批发的信息增益 Dim Ipifa1 As Double Ipifa1 = tradefuc(pifa11, pifa12) Dim Ipifa2 As Double Ipifa2 = tradefuc(pifa21, pifa22) Dim Ipifa As Double Ipifa = pifa1 / t * Ipifa1 + pifa2 / t * Ipifa2 Dim Gainpifa A

43、s Double Gainpifa = I - Ipifa Gain(学生)的源代码如下 '学生 Dim student1 As Double Dim studentCon1 As String studentCon1 = "Select Count(*) from trade where 学生='Y' " sCom.Connection = sCon sCom.CommandText = studentCon1 student1 = sCom.Execut

44、eScalar Dim student11 As Double Dim studentCon11 As String studentCon11 = "Select Count(*) from trade where 学生='Y' and 流失='Y' " sCom.Connection = sCon sCom.CommandText = studentCon11 student11 = sCom.ExecuteScalar Dim student12 As Do

45、uble Dim studentCon12 As String studentCon12 = "Select Count(*) from trade where 学生='Y' and 流失='N' " sCom.Connection = sCon sCom.CommandText = studentCon12 student12 = sCom.ExecuteScalar Dim student2 As Double Dim studentCon2 As String

46、 studentCon2 = "Select Count(*) from trade where 学生='N' " sCom.Connection = sCon sCom.CommandText = studentCon2 student2 = sCom.ExecuteScalar Dim student21 As Double Dim studentCon21 As String studentCon21 = "Select Count(*) from trade

47、 where 学生='N' and 流失='Y' " sCom.Connection = sCon sCom.CommandText = studentCon21 student21 = sCom.ExecuteScalar Dim student22 As Double Dim studentCon22 As String studentCon22 = "Select Count(*) from trade where 学生='N' and 流失='N' " sC

48、om.Connection = sCon sCom.CommandText = studentCon22 student22 = sCom.ExecuteScalar '计算学生的信息增益 Dim Istudent1 As Double Istudent1 = tradefuc(student11, student12) Dim Istudent2 As Double Istudent2 = tradefuc(student21, student22)

49、 Dim Istudent As Double Istudent = student1 / t * Istudent1 + student2 / t * Istudent2 Dim Gainstudent As Double Gainstudent = I - Istudent Gain(银行转帐)的源代码实现 '支付方式--银行转帐 Dim bank1 As Double Dim bankCon1 As String bankCon1

50、 "Select Count(*) from trade where 银行='Y' " sCom.Connection = sCon sCom.CommandText = bankCon1 bank1 = sCom.ExecuteScalar Dim bank11 As Double Dim bankCon11 As String bankCon11 = "Select Count(*) from trade where 银行='Y' and 流失='Y' " s

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服