ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:103KB ,
资源ID:9901167      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9901167.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(学位论文-—水库泥沙淤积的不确定因素分析--外文翻译.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

学位论文-—水库泥沙淤积的不确定因素分析--外文翻译.doc

1、外文翻译 Uncertainty Analysis Of Reservoir Sedimentation Abstract: Significant advances have been made in understanding the importance of the factors involved in reservoir sedimentation. However, predicting the accumulation of sediment in a reservoir is still a complex problem. In estimating reserv

2、oir sedimentation and accumulation, a number of uncertainties arise. These are related to quantity of streamflow, sediment load, sediment particle size, and specific weight, trap efficiency, and reservoir operation。In this study, Monte Carlo simulation and Latin hypercube sampling are used to quanti

3、fy the uncertainty of annual reservoir sedimentation and accumulated reservoir sedimentation through time. In addition, sensitivity analysis was performed to examine the importance of various factors on the uncertainty of annual reservoir sedimentation. The proposed procedures have been applied to t

4、he Kenny Reservoir at the White River Basin in Colorado.The uncertainty of annual reservoir sedimentation and the effect of each uncertain factor, taken individually and in combinations, on the uncertainty of accumulated reservoir sedimentation through time have been examined. The results show that

5、annual streamflow and sediment load are the most important factors determining the variability of annual reservoir sedimentation and accumulated reservoir sedimentation.In the case of Kenny Reservoir, the uncertainty expressed by the coefficient of variation can be on the order of 65% for annual res

6、ervoir sedimentation and 39% for accumulated reservoir sedimentation volume. Introduction Reservoir sedimentation varies with several factors such as sediment production, sediment transportation rate, sediment type, mode of sediment deposition, reservoir operation, reservoir geometry, and streamfl

7、ow variability. Sediment is transported as suspended and bed loads by streams and rivers coming into a reservoir. Due to flow deceleration when a river approaches a reservoir, the sediment transport capacity decreases,and some of the incoming sediment is trapped and deposited in the reservoir. In ad

8、dition, the deposited sediments may consolidate by their weight and the weight of overlying water through time. Predicting the sediment coming into a reservoir,its deposition, and its accumulation throughout the years, after construction of the dam, have been important problems in hydraulic engineer

9、ing. Despite the advances made in understanding several of the factors involved in reservoir sedimentation, predicting the accumulation of sediment in a reservoir is still a complex problem. Empirical models, based on surveys and field observations, have been developed and applied to estimate annual

10、 reservoir sedimentation load (RSL), accumulated reservoir sedimentation load, (ARSL), and accumulated reservoir sedimentation volume (ARSV) after a given number of years of reservoir operation. Likewise, several mathematical models for predicting reservoir sedimentation have been developed based on

11、 the equations of motion and continuity for water and sediment.However,empirical methods are still widely used in actual engineering practice. In estimating resevoir sediment inflow, reservoir sedimentation,and reservoir sediment accumulation, either by empirical or analytical approaches, a number

12、of uncertainties arises.The main factors affecting reservoir sedimentation are (1)quantity of streamflow; (2) quantity of sediment inflow into a reservoir;(3) sediment particle size; (4) specific weight of the deposits; and (5) reservoir size and operation. Depending on the particular case at hand,

13、some factors may be more important than others. All of these factors are uncertain to some degree and, as a consequence, reservoir sedimentation will be an uncertain quantity too.In addition, which model (or procedure) is applicable to estimate some of the foregoing quantities and, in fact, which mo

14、del is to be used to estimate the amount of sediment that will be trapped in a reservoir are questions that cannot be answered with certainty. For instance, Fan (1988) obtained information on 34 stream-,18 watershed-, and 20 reservoir-sedimentation models and stated that different models may give si

15、gnificantly different results even when using the same set of input data. Such an additional factor, known as ‘‘model uncertainty,’’ may be quite a large component of the overall uncertainty. In any case, the planner and manager of a reservoir may be interested in quantifying how the uncertainty of

16、some of the factors affecting reservoir sedimentation translate into the uncertainty of annual sediment deposition and accumulated sediment deposition through time.In this paper, we address the issue quantifying the effect of parameter uncertainty on reservoir sedimentation based on a set of predefi

17、ned models as will be described below.The effect of model uncertainty is not considered in this study. Several methods of uncertainty analysis have been developed and applied in water resources engineering. The most widely used methods are first-order analysis (FOA) and Monte Carlo simulation (MCS)

18、 FOA is based on linearizing the functional relationship that relates a dependent random variable and a set of independent random variables by Taylor series expansion. This method has been applied in several water resources and environmental engineering problems involving uncertainty. Examples incl

19、ude storm sewer design; ground-water-flow estimation , prediction of dissolved oxygen;and subsurface-flow and contaminant transport estimation . In MCS, stochastic inputs are generated from their probability distributions and are then entered into empirical or analytical models of the underlying phy

20、sical process involved in generating stochastic outputs. Then, the generated outputs are analyzed statistically to quantify the uncertainty of the output. Many examples of uncertainty analysis by MCS can be found in water resources and environmental engineering. Some examples include steady-state gr

21、ound-water-flow estimation and water-quality modeling . Scavia et al. (1981) made a comparison of MCS and FOA for determining uncertainties associated with eutrophication model outputs such as phytoplankton, zooplankton, and nitrogen forms.They indicated that both MCS and FOA agree well in estimati

22、ng the mean and variance of model estimates. However, MCS has the advantage of providing better information about the output frequency distribution. Latin hypercube sampling (LHS) is an alternative simulation procedure that has been developed for uncertainty analysis of physical and engineering sys

23、tems.The basic idea behind LHS is to generate random stochastic inputs in a stratified manner from the probability distributions. In this way the number of generated inputs can be reduced considerably as compared to MCS.They pointed out that the point estimate method yields a larger mean and varianc

24、e than those obtained by the FOA and LHS methods. Furthermore, in studying the importance of stochastic inputs on the output by sensitivity analysis, LHS yields more information than the other two methods. In this study, uncertainty analysis based on MCS and LHS methods are conducted to estimate th

25、e probability distribution of annual reservoir sedimentation volume (RSV). In addition,sensitivity analysis is performed to see the relative importance of stochastic inputs in estimating the variability of RSV. Furthermore,uncertainty analysis of ARSV throughout time is performed using MCS.In this p

26、rocedure, annual streamflows are generated by a stochastic time series model. The effect of parameter uncertainty in the stochastic model on the output (i.e.,ARSV) is also considered. Estimation Of Annual And Accumulated Reservoir Sediment Load(Mass) And Volume Reservoir sedimentation volume depe

27、nds, among other factors,on the quantity of sediment inflow, the percentage of sediment inflow trapped by the reservoir, and the specific weight of the deposited sediment considering the effect of compaction with time.The incoming sediment load and the streamflow discharge are usually measured at hy

28、drometric gauging stations, and a sediment rating curve is constructed.The sediment rating curve expresses the relationship between the rate of sediment discharge and the rate of streamflow discharge and is usually represented graphically on logarithmic coordinates.Incoming sediment is generally com

29、posed of suspended sediment and bed load. When the bed load cannot be obtained by measurements, it can be estimated by formulas. In estimating annual sediment load, it has been common practice to use annual sediment rating curves for both suspended sediment and bed load. The annual sediment rating

30、curve is the relation between annual sediment load and annual streamflow discharge.Two methods can be considered for determining annual sediment rating curves . A simple method involves the following steps: (1) For a given year calculate daily sediment loads from daily sediment rating curves; (2) ad

31、d all daily sediment loads and divide the sum by the number of days in the year, then this value represents the annual average sediment load in tons per day; (3) repeat Steps 1 and 2 for all years of record; and (4) plot the annual average sediment load versus the annual average streamflow for each

32、year in the record. An alternative method is based on estimating annual sediment loads using flow duration curves. In any case, an annual sediment rating curve can be constructed by simple regression analysis after logarithmic transformation of annual average streamflow discharges and annual average

33、 sediment loads. Colby (1956) stated that in actual practice daily sediment rating curves could be assumed to be equivalent to instantaneous sediment rating curves. Daily rating curves of suspended sediment and bed load may be represented as (1) (2) where QSD = daily suspended sediment

34、 load (tons/day); QBD= daily bed load (tons/day); QWD = daily average streamflow discharge (m3/s);and , and , = rating curve coefficients for suspended sediment and bed load, respectively. Cs is a rating curve correction factor needed to avoid underestimating the estimate of suspended load. Such a

35、 correction factor Cs is equal to exp(2.65) where s is the residual standard error (Ferguson 1986). Likewise, Cb is the correction factor for bed load. The corresponding annual rating curves of suspended sediment and bed load are (3) (4) where QSt = (annual average) suspended

36、sediment load (tons/day) in year t; QBt = (annual average) bed load (tons/day) in year t; QWt = (annual average) streamflow discharge (m3/s) in year t; and , and , = rating curve coefficients for annual average suspended-sediment and bed loads, respectively. Then, the (average) total sediment infl

37、ow in year t, QTt, is simply QTt = QSt + QBt. 译文 水库泥沙淤积的不确定因素分析 摘要:尽管在理解关于水库中所涉及的几个因素的重要性方面取得了很大的进展,然而,预测水库泥沙的淤积仍然是一个复杂的问题。水库泥沙的沉淀和淤积,出现了一些不确定因素。这些涉及到流量,泥沙,泥沙颗粒大小,比重,拦沙效率和水库运行等。在这项研究中,蒙特·卡洛模拟法和拉丁超立方抽样法是用来量化水库年度泥沙淤积和水库泥沙淤积过程的不确定性。此外,通过敏感度分析来确定水库年度泥沙淤积各种不确定性因素的重要性。这个程序已经应用到科罗拉多州白河流域的肯尼水库。水库年度泥沙

38、淤积的不确定性和影响水库泥沙淤积的不确定性因素,采取单独和组合的方法审查水库泥沙淤积进程中的每个不确定因素。结果表明,年流量和输沙量是确定水库年度泥沙淤积和泥沙积累过程变化最重要的因素。在肯尼水库的情况下,变差系数的不确定性可以大概表达为年度水库泥沙淤积的65%和累积的水库泥沙淤积量的39%。 简介 水库泥沙淤积因几个因素的不同而变化,例如产沙、 输沙率、 沉积物类型、 泥沙淤积的模式、 水库调度、 水库的几何形状,河川径流变化的模式等。泥沙作为悬移质和河床质通过小溪和河流进入水库。 由于水流临近水库,流速下降,携沙能力下降,泥沙下沉并淤积在水库中。此外,淤积的泥沙可能会因泥沙自身重量和

39、它上面的水的质量的压力而变得坚固。预测进入水库的泥沙通过时间积累所造成的淤积问题,将会是大坝施工以来一直存在在水利水电工程中的重要问题。尽管在理解关于水库中所涉及的几个因素的重要性方面取得了很大的进展,然而,预测水库泥沙的淤积仍然是一个复杂的问题。以调查和实地观察为基础的实证模型得到发展和应用于估计每年水库泥沙淤积负载 (RSL)、 累积的水库泥沙淤积负载 (ARSL),并且计算运行一定年限之后的水库泥沙淤积的库容(ARSV)。同样,预测水库泥沙淤积的几个基于运动方程和水沙连续性的数学模型已经发展。然而,在实际工程实践中仍然广泛使用实证方法。 在估计水库泥沙流入、水库泥沙沉淀和水库泥沙淤积时

40、只有通过实证或分析的方法,一些不确定因素才能出现。影响水库泥沙淤积的主要因素是 (1)流速 ;(2) 入库泥沙量 ;(3) 泥沙颗粒大小 ;(4) 淤积的泥沙重量 ;(5) 水库的大小和运行方式。根据眼前的一些特定情况,一些因素可能会比其他因素更重要。所有这些因素都有某种程度的不确定性,因此,水库泥沙淤积也将有很大程度的不确定性。此外,一些模型 (或过程) 适用于一些上述某些因素的估计,但事实上,另一些用于估计淤积的模型,在一座水库中,泥沙量可能是不能肯定地回答的问题。例如,Fan(1988 年) 关于对34条溪流、 18个流域和 20 个水库的泥沙淤积模型有关资料的分析,指出不同的模型可能

41、会有明显不同的结果,即使使用相同的输入数据。这种附加因素,称为模型的不确定性,可能是整体不确定性中相当大的组成部分。在一些情况下,设计者和水库管理者可能会有兴趣量化一些影响水库泥沙淤积因素的不确定性,把它转化为每年的泥沙淤积和泥沙淤积通过时间变化的不确定性。在一些论文中,我们通过基于一组预定义的模型参数来量化对水库泥沙淤积的不确定性的影响来处理问题。在这些研究中,是不考虑模型不确定性因素的影响。 不确定性分析的几种方法已被发展和运用于水资源工程中。第一阶分析 (FOA) 和蒙特卡罗模拟 (MCS) 是最广泛使用的方法。FOA 基于线性关系,涉及一个从属的随机变量和一套独立的随机变量的函数关系

42、由泰勒级数展开。这种方法涉及的不确定性已应用在几个水资源和环境工程的问题中。例子包括风暴下水道设计,地面水流估计,溶解氧的预测,潜流和污染物的运输估计等。在 MCS中,随机输入通常从其概率分布分析,然后进入实证或分析基于随机产出的潜在物理过程的模型。然后,生成的产出分析统计是用以量化输出的不确定性。有很多通过MCS 所做的不确定性分析,运用于水资源和环境工程的例子。这些例子包括稳态地面水流估计和水质量建模。斯卡维亚(1981 年) 作了一个 MCS 和FOA的比较,用来确定浮游植物、 浮游动物、 和氮形式等水体富营养化模型产生的不确定性。他们表示 MCS 和FOA都非常接近估计的平均值和方差

43、模型的估计数。然而,MCS 在提供更好地分发信息的输出频率方面更具有优势。 拉丁立方体抽样 (LHS) 是替代模拟程序,已经开发出物理和工程系统的不确定性分析。LHS 背后的基本思想是以分层方式从概率分布生成随机输入。以这种方式生成输入数目可以与 MCS 相比大大减少。他们指出的点估计方法产生更大的平均值和方差比是通过FOA 和 LHS 的方法获得的。此外,在研究随机输入输出灵敏度分析的重要性上,LHS 能比其他两种方法收获更多详细的信息。 在此研究中,基于 MCS 和 LHS 方法的不确定性分析用以估计每年水库泥沙淤积库容 (RSV) 的概率分布。此外,通过灵敏度分析来分析随机输入在估计

44、水库泥沙淤积库容变化中的相对重要性。并且,使用 MCS 来执行 ARSV 的整个时间过程的不确定性分析。在此过程中,每年河川流量用随机时间序列模型所生成。随机参数的不确定性影响在输出的模型(ARSV)中也被考虑。 年度淤积的估计 水库泥沙负载 (质量) 和库容 在其他因素中,水库泥沙淤积量取决于进入水库的泥沙入流量和泥沙淤积率,和考虑时间过程与压实效应的淤积泥沙的具体重量的百分比。进入的泥沙负载与河川径流的排出量的测量通常在水文测站和泥沙评级曲线中构造。泥沙评级曲线表示的输沙率与河川径流排放率之间的关系,通常在对数坐标上以图形方式表示。流入的泥沙一般由悬移质泥沙及河床质泥沙组成。当河床质

45、泥沙不能通过直接测量时,它可以通过公式估计。 在估计每年的输沙量时,很常见的做法是通过每年的泥沙评级曲线用于估计悬移质泥沙及河床质泥沙。每年的泥沙评级曲线是每年输沙量和年河川径流流量之间的关系。有两种方法可以用来确定每年的泥沙评级曲线 。一种简单方法包括以下步骤:(1) 对于给定年份,每日的泥沙淤积量可以从日常的泥沙评级曲线中查出 ;(2) 把所有日常的泥沙淤积量相加,总和除以一年中的天数,然后此值代表年平均每天泥沙淤积量;(3) 对于所有年份的记录,重复步骤 1 和 2; (4) 计算记录每一年年度平均泥沙负载与年度平均河川径流量。另一种方法是基于使用流量时间曲线估计每年泥沙荷载。在任何情

46、况下,每年的泥沙评级曲线可以在每年平均径流排放和每年平均泥沙量对数变换之后做简单回归分析。柯比 (1956 年) 指出在实际做法中,日常泥沙评级曲线可以假定等价于瞬时泥沙评级曲线。 悬移质泥沙及河床质泥沙的每日评级曲线可表示为 (1) (2) 其中 QSD 代表年平均悬移质泥沙负荷 (吨 / 天) ;QBD 代表年平均河床质泥沙负载 (吨 / 天) ;QWD代表每年平均河川径流流量 (立方米/秒) ;, , 分别代表评级曲线的悬移质泥沙和河床质泥沙的系数。Cs代表悬移质泥沙负载评级曲线的变差系数。变差系数 Cs 等于 2.65 的平方,其中s 是标准差 (弗格森 1986年)。同样,Cb 是河床质泥沙负载的变差系数。悬移质泥沙及河床质泥沙相应的年度评级曲线是 (3) (4) 其中 QSt 代表平均每年悬移质输沙量 (吨 / 天);QBt 代表平均每年河床质输沙量(吨 / 天);QWt 代表平均每年河川径流流量 (立方米/秒),, , , 分别代表评级曲线的悬移质泥沙和河床质泥沙的系数。然后,平均每年河川径流流量 QTt,可简单的用式 QTt = QSt + QBt 计算得到。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服